Properties

Label 2-4001-1.1-c1-0-122
Degree $2$
Conductor $4001$
Sign $1$
Analytic cond. $31.9481$
Root an. cond. $5.65226$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.45·2-s − 1.68·3-s + 4.02·4-s − 3.39·5-s − 4.13·6-s + 4.85·7-s + 4.97·8-s − 0.165·9-s − 8.32·10-s − 3.48·11-s − 6.78·12-s − 0.426·13-s + 11.9·14-s + 5.71·15-s + 4.16·16-s − 4.22·17-s − 0.405·18-s + 7.37·19-s − 13.6·20-s − 8.17·21-s − 8.54·22-s + 5.74·23-s − 8.38·24-s + 6.50·25-s − 1.04·26-s + 5.32·27-s + 19.5·28-s + ⋯
L(s)  = 1  + 1.73·2-s − 0.972·3-s + 2.01·4-s − 1.51·5-s − 1.68·6-s + 1.83·7-s + 1.76·8-s − 0.0550·9-s − 2.63·10-s − 1.04·11-s − 1.95·12-s − 0.118·13-s + 3.18·14-s + 1.47·15-s + 1.04·16-s − 1.02·17-s − 0.0955·18-s + 1.69·19-s − 3.05·20-s − 1.78·21-s − 1.82·22-s + 1.19·23-s − 1.71·24-s + 1.30·25-s − 0.205·26-s + 1.02·27-s + 3.69·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4001\)
Sign: $1$
Analytic conductor: \(31.9481\)
Root analytic conductor: \(5.65226\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4001,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.318923683\)
\(L(\frac12)\) \(\approx\) \(3.318923683\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad4001 \( 1+O(T) \)
good2 \( 1 - 2.45T + 2T^{2} \)
3 \( 1 + 1.68T + 3T^{2} \)
5 \( 1 + 3.39T + 5T^{2} \)
7 \( 1 - 4.85T + 7T^{2} \)
11 \( 1 + 3.48T + 11T^{2} \)
13 \( 1 + 0.426T + 13T^{2} \)
17 \( 1 + 4.22T + 17T^{2} \)
19 \( 1 - 7.37T + 19T^{2} \)
23 \( 1 - 5.74T + 23T^{2} \)
29 \( 1 + 1.35T + 29T^{2} \)
31 \( 1 - 1.93T + 31T^{2} \)
37 \( 1 - 5.57T + 37T^{2} \)
41 \( 1 + 3.32T + 41T^{2} \)
43 \( 1 + 3.08T + 43T^{2} \)
47 \( 1 - 13.0T + 47T^{2} \)
53 \( 1 - 2.68T + 53T^{2} \)
59 \( 1 + 7.51T + 59T^{2} \)
61 \( 1 - 13.7T + 61T^{2} \)
67 \( 1 + 4.51T + 67T^{2} \)
71 \( 1 + 2.97T + 71T^{2} \)
73 \( 1 - 13.5T + 73T^{2} \)
79 \( 1 + 11.0T + 79T^{2} \)
83 \( 1 - 10.2T + 83T^{2} \)
89 \( 1 - 3.18T + 89T^{2} \)
97 \( 1 - 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.067991564242208936993556816381, −7.45546299340662686647666872355, −6.97186395418229750170548874309, −5.80939453328498079209743412057, −5.12490886197908036609856640196, −4.85237701486682776393366080401, −4.21377060569544978828938507973, −3.22509505840709457463816239884, −2.35041701963252123403757317829, −0.848266441908852189780975776656, 0.848266441908852189780975776656, 2.35041701963252123403757317829, 3.22509505840709457463816239884, 4.21377060569544978828938507973, 4.85237701486682776393366080401, 5.12490886197908036609856640196, 5.80939453328498079209743412057, 6.97186395418229750170548874309, 7.45546299340662686647666872355, 8.067991564242208936993556816381

Graph of the $Z$-function along the critical line