L(s) = 1 | + 2.45·2-s − 1.68·3-s + 4.02·4-s − 3.39·5-s − 4.13·6-s + 4.85·7-s + 4.97·8-s − 0.165·9-s − 8.32·10-s − 3.48·11-s − 6.78·12-s − 0.426·13-s + 11.9·14-s + 5.71·15-s + 4.16·16-s − 4.22·17-s − 0.405·18-s + 7.37·19-s − 13.6·20-s − 8.17·21-s − 8.54·22-s + 5.74·23-s − 8.38·24-s + 6.50·25-s − 1.04·26-s + 5.32·27-s + 19.5·28-s + ⋯ |
L(s) = 1 | + 1.73·2-s − 0.972·3-s + 2.01·4-s − 1.51·5-s − 1.68·6-s + 1.83·7-s + 1.76·8-s − 0.0550·9-s − 2.63·10-s − 1.04·11-s − 1.95·12-s − 0.118·13-s + 3.18·14-s + 1.47·15-s + 1.04·16-s − 1.02·17-s − 0.0955·18-s + 1.69·19-s − 3.05·20-s − 1.78·21-s − 1.82·22-s + 1.19·23-s − 1.71·24-s + 1.30·25-s − 0.205·26-s + 1.02·27-s + 3.69·28-s + ⋯ |
Λ(s)=(=(4001s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4001s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.318923683 |
L(21) |
≈ |
3.318923683 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4001 | 1+O(T) |
good | 2 | 1−2.45T+2T2 |
| 3 | 1+1.68T+3T2 |
| 5 | 1+3.39T+5T2 |
| 7 | 1−4.85T+7T2 |
| 11 | 1+3.48T+11T2 |
| 13 | 1+0.426T+13T2 |
| 17 | 1+4.22T+17T2 |
| 19 | 1−7.37T+19T2 |
| 23 | 1−5.74T+23T2 |
| 29 | 1+1.35T+29T2 |
| 31 | 1−1.93T+31T2 |
| 37 | 1−5.57T+37T2 |
| 41 | 1+3.32T+41T2 |
| 43 | 1+3.08T+43T2 |
| 47 | 1−13.0T+47T2 |
| 53 | 1−2.68T+53T2 |
| 59 | 1+7.51T+59T2 |
| 61 | 1−13.7T+61T2 |
| 67 | 1+4.51T+67T2 |
| 71 | 1+2.97T+71T2 |
| 73 | 1−13.5T+73T2 |
| 79 | 1+11.0T+79T2 |
| 83 | 1−10.2T+83T2 |
| 89 | 1−3.18T+89T2 |
| 97 | 1−10.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.067991564242208936993556816381, −7.45546299340662686647666872355, −6.97186395418229750170548874309, −5.80939453328498079209743412057, −5.12490886197908036609856640196, −4.85237701486682776393366080401, −4.21377060569544978828938507973, −3.22509505840709457463816239884, −2.35041701963252123403757317829, −0.848266441908852189780975776656,
0.848266441908852189780975776656, 2.35041701963252123403757317829, 3.22509505840709457463816239884, 4.21377060569544978828938507973, 4.85237701486682776393366080401, 5.12490886197908036609856640196, 5.80939453328498079209743412057, 6.97186395418229750170548874309, 7.45546299340662686647666872355, 8.067991564242208936993556816381