L(s) = 1 | − 0.538·2-s − 1.14·3-s − 1.70·4-s + 0.955·5-s + 0.618·6-s + 4.48·7-s + 1.99·8-s − 1.68·9-s − 0.514·10-s + 0.959·11-s + 1.96·12-s − 2.43·13-s − 2.41·14-s − 1.09·15-s + 2.34·16-s + 3.03·17-s + 0.907·18-s + 7.55·19-s − 1.63·20-s − 5.14·21-s − 0.517·22-s + 0.535·23-s − 2.29·24-s − 4.08·25-s + 1.31·26-s + 5.37·27-s − 7.67·28-s + ⋯ |
L(s) = 1 | − 0.380·2-s − 0.662·3-s − 0.854·4-s + 0.427·5-s + 0.252·6-s + 1.69·7-s + 0.706·8-s − 0.561·9-s − 0.162·10-s + 0.289·11-s + 0.566·12-s − 0.675·13-s − 0.646·14-s − 0.282·15-s + 0.585·16-s + 0.736·17-s + 0.213·18-s + 1.73·19-s − 0.365·20-s − 1.12·21-s − 0.110·22-s + 0.111·23-s − 0.468·24-s − 0.817·25-s + 0.257·26-s + 1.03·27-s − 1.44·28-s + ⋯ |
Λ(s)=(=(4001s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4001s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.332195257 |
L(21) |
≈ |
1.332195257 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4001 | 1+O(T) |
good | 2 | 1+0.538T+2T2 |
| 3 | 1+1.14T+3T2 |
| 5 | 1−0.955T+5T2 |
| 7 | 1−4.48T+7T2 |
| 11 | 1−0.959T+11T2 |
| 13 | 1+2.43T+13T2 |
| 17 | 1−3.03T+17T2 |
| 19 | 1−7.55T+19T2 |
| 23 | 1−0.535T+23T2 |
| 29 | 1−5.42T+29T2 |
| 31 | 1+6.44T+31T2 |
| 37 | 1−5.31T+37T2 |
| 41 | 1−9.04T+41T2 |
| 43 | 1−5.01T+43T2 |
| 47 | 1+5.65T+47T2 |
| 53 | 1+5.67T+53T2 |
| 59 | 1−6.74T+59T2 |
| 61 | 1+2.62T+61T2 |
| 67 | 1−12.0T+67T2 |
| 71 | 1+12.0T+71T2 |
| 73 | 1+6.66T+73T2 |
| 79 | 1+11.7T+79T2 |
| 83 | 1+6.98T+83T2 |
| 89 | 1−9.51T+89T2 |
| 97 | 1+15.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.396778167603412871342804061756, −7.78101176667819896526909638552, −7.29130214008625152983684053970, −5.89223852450139132317964919382, −5.42072732670841584402864128639, −4.88389170200984194841718163184, −4.12591028451049633340473252167, −2.87135785802283565083821969169, −1.59362200720779506999637268811, −0.798835754535184961063429769858,
0.798835754535184961063429769858, 1.59362200720779506999637268811, 2.87135785802283565083821969169, 4.12591028451049633340473252167, 4.88389170200984194841718163184, 5.42072732670841584402864128639, 5.89223852450139132317964919382, 7.29130214008625152983684053970, 7.78101176667819896526909638552, 8.396778167603412871342804061756