L(s) = 1 | − 0.932·2-s − 1.34·3-s − 1.13·4-s − 0.776·5-s + 1.25·6-s − 4.61·7-s + 2.91·8-s − 1.19·9-s + 0.724·10-s − 4.05·11-s + 1.51·12-s + 4.65·13-s + 4.30·14-s + 1.04·15-s − 0.460·16-s − 7.05·17-s + 1.11·18-s + 3.82·19-s + 0.877·20-s + 6.19·21-s + 3.78·22-s + 3.00·23-s − 3.91·24-s − 4.39·25-s − 4.33·26-s + 5.63·27-s + 5.21·28-s + ⋯ |
L(s) = 1 | − 0.659·2-s − 0.775·3-s − 0.565·4-s − 0.347·5-s + 0.511·6-s − 1.74·7-s + 1.03·8-s − 0.399·9-s + 0.228·10-s − 1.22·11-s + 0.438·12-s + 1.29·13-s + 1.14·14-s + 0.269·15-s − 0.115·16-s − 1.71·17-s + 0.263·18-s + 0.876·19-s + 0.196·20-s + 1.35·21-s + 0.807·22-s + 0.626·23-s − 0.799·24-s − 0.879·25-s − 0.850·26-s + 1.08·27-s + 0.985·28-s + ⋯ |
Λ(s)=(=(4001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4001 | 1+O(T) |
good | 2 | 1+0.932T+2T2 |
| 3 | 1+1.34T+3T2 |
| 5 | 1+0.776T+5T2 |
| 7 | 1+4.61T+7T2 |
| 11 | 1+4.05T+11T2 |
| 13 | 1−4.65T+13T2 |
| 17 | 1+7.05T+17T2 |
| 19 | 1−3.82T+19T2 |
| 23 | 1−3.00T+23T2 |
| 29 | 1−2.12T+29T2 |
| 31 | 1+3.23T+31T2 |
| 37 | 1−2.48T+37T2 |
| 41 | 1−5.43T+41T2 |
| 43 | 1+6.26T+43T2 |
| 47 | 1−8.48T+47T2 |
| 53 | 1−9.74T+53T2 |
| 59 | 1−2.38T+59T2 |
| 61 | 1−3.43T+61T2 |
| 67 | 1+3.42T+67T2 |
| 71 | 1+11.2T+71T2 |
| 73 | 1−2.12T+73T2 |
| 79 | 1−0.0368T+79T2 |
| 83 | 1−11.9T+83T2 |
| 89 | 1−18.1T+89T2 |
| 97 | 1−0.885T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.223063551968129877955215116295, −7.35884399278717688412707073731, −6.61714958714561685353380450461, −5.88488268296849098666763058776, −5.25891905079570533160214302943, −4.23712947294074065587780848859, −3.45593165533307940008464388671, −2.50319567851455884445771026672, −0.76789271653011250485522934832, 0,
0.76789271653011250485522934832, 2.50319567851455884445771026672, 3.45593165533307940008464388671, 4.23712947294074065587780848859, 5.25891905079570533160214302943, 5.88488268296849098666763058776, 6.61714958714561685353380450461, 7.35884399278717688412707073731, 8.223063551968129877955215116295