L(s) = 1 | + (−1.32 − 1.11i)2-s + (0.173 + 0.984i)4-s + (3.25 + 1.18i)5-s + (−0.173 + 0.984i)7-s + (−0.866 + 1.5i)8-s + (−2.99 − 5.19i)10-s + (−3.25 + 1.18i)11-s + (3.83 − 3.21i)13-s + (1.32 − 1.11i)14-s + (4.69 − 1.71i)16-s + (0.5 − 0.866i)19-s + (−0.601 + 3.41i)20-s + (5.63 + 2.05i)22-s + (1.20 + 6.82i)23-s + (5.36 + 4.49i)25-s − 8.66·26-s + ⋯ |
L(s) = 1 | + (−0.938 − 0.787i)2-s + (0.0868 + 0.492i)4-s + (1.45 + 0.529i)5-s + (−0.0656 + 0.372i)7-s + (−0.306 + 0.530i)8-s + (−0.948 − 1.64i)10-s + (−0.981 + 0.357i)11-s + (1.06 − 0.891i)13-s + (0.354 − 0.297i)14-s + (1.17 − 0.427i)16-s + (0.114 − 0.198i)19-s + (−0.134 + 0.762i)20-s + (1.20 + 0.437i)22-s + (0.250 + 1.42i)23-s + (1.07 + 0.899i)25-s − 1.69·26-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.973+0.230i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.973+0.230i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.973+0.230i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(406,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.973+0.230i)
|
Particular Values
L(1) |
≈ |
1.12452−0.131437i |
L(21) |
≈ |
1.12452−0.131437i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(1.32+1.11i)T+(0.347+1.96i)T2 |
| 5 | 1+(−3.25−1.18i)T+(3.83+3.21i)T2 |
| 7 | 1+(0.173−0.984i)T+(−6.57−2.39i)T2 |
| 11 | 1+(3.25−1.18i)T+(8.42−7.07i)T2 |
| 13 | 1+(−3.83+3.21i)T+(2.25−12.8i)T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.20−6.82i)T+(−21.6+7.86i)T2 |
| 29 | 1+(−2.65−2.22i)T+(5.03+28.5i)T2 |
| 31 | 1+(−0.868−4.92i)T+(−29.1+10.6i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−18.5+32.0i)T2 |
| 41 | 1+(2.65−2.22i)T+(7.11−40.3i)T2 |
| 43 | 1+(−0.939+0.342i)T+(32.9−27.6i)T2 |
| 47 | 1+(−0.601+3.41i)T+(−44.1−16.0i)T2 |
| 53 | 1−10.3T+53T2 |
| 59 | 1+(−3.25−1.18i)T+(45.1+37.9i)T2 |
| 61 | 1+(−0.347+1.96i)T+(−57.3−20.8i)T2 |
| 67 | 1+(−6.12+5.14i)T+(11.6−65.9i)T2 |
| 71 | 1+(−5.19−9i)T+(−35.5+61.4i)T2 |
| 73 | 1+(1−1.73i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.766+0.642i)T+(13.7+77.7i)T2 |
| 83 | 1+(5.30+4.45i)T+(14.4+81.7i)T2 |
| 89 | 1+(−5.19+9i)T+(−44.5−77.0i)T2 |
| 97 | 1+(15.9−5.81i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.33482212270547605630066930510, −9.716318304400094777650370104285, −8.907419881708049467630124830791, −8.120916185345174593375360539903, −6.91443365739882641332494350958, −5.69145901754608142307092514204, −5.35679754117223076923575777301, −3.19886469357307466710158690200, −2.41283335485612933447174831786, −1.31639878977277672506223145894,
0.921340825796910299897261123653, 2.42420870351103210421677174294, 4.05666684278221958750301188997, 5.40988075636041190519329002579, 6.19684865338973261968586990953, 6.86315694199975006540617092476, 8.069815103481042698855808048060, 8.694374034091340172295435063525, 9.389769121730404211990219652602, 10.16981892718208645872715772854