Properties

Label 2-3e6-27.16-c1-0-8
Degree $2$
Conductor $729$
Sign $0.973 + 0.230i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.32 − 1.11i)2-s + (0.173 + 0.984i)4-s + (3.25 + 1.18i)5-s + (−0.173 + 0.984i)7-s + (−0.866 + 1.5i)8-s + (−2.99 − 5.19i)10-s + (−3.25 + 1.18i)11-s + (3.83 − 3.21i)13-s + (1.32 − 1.11i)14-s + (4.69 − 1.71i)16-s + (0.5 − 0.866i)19-s + (−0.601 + 3.41i)20-s + (5.63 + 2.05i)22-s + (1.20 + 6.82i)23-s + (5.36 + 4.49i)25-s − 8.66·26-s + ⋯
L(s)  = 1  + (−0.938 − 0.787i)2-s + (0.0868 + 0.492i)4-s + (1.45 + 0.529i)5-s + (−0.0656 + 0.372i)7-s + (−0.306 + 0.530i)8-s + (−0.948 − 1.64i)10-s + (−0.981 + 0.357i)11-s + (1.06 − 0.891i)13-s + (0.354 − 0.297i)14-s + (1.17 − 0.427i)16-s + (0.114 − 0.198i)19-s + (−0.134 + 0.762i)20-s + (1.20 + 0.437i)22-s + (0.250 + 1.42i)23-s + (1.07 + 0.899i)25-s − 1.69·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.230i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 + 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $0.973 + 0.230i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (406, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ 0.973 + 0.230i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.12452 - 0.131437i\)
\(L(\frac12)\) \(\approx\) \(1.12452 - 0.131437i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (1.32 + 1.11i)T + (0.347 + 1.96i)T^{2} \)
5 \( 1 + (-3.25 - 1.18i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (0.173 - 0.984i)T + (-6.57 - 2.39i)T^{2} \)
11 \( 1 + (3.25 - 1.18i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (-3.83 + 3.21i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-1.20 - 6.82i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-2.65 - 2.22i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-0.868 - 4.92i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (2.65 - 2.22i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (-0.939 + 0.342i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-0.601 + 3.41i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 10.3T + 53T^{2} \)
59 \( 1 + (-3.25 - 1.18i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-0.347 + 1.96i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-6.12 + 5.14i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-5.19 - 9i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (0.766 + 0.642i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (5.30 + 4.45i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-5.19 + 9i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (15.9 - 5.81i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33482212270547605630066930510, −9.716318304400094777650370104285, −8.907419881708049467630124830791, −8.120916185345174593375360539903, −6.91443365739882641332494350958, −5.69145901754608142307092514204, −5.35679754117223076923575777301, −3.19886469357307466710158690200, −2.41283335485612933447174831786, −1.31639878977277672506223145894, 0.921340825796910299897261123653, 2.42420870351103210421677174294, 4.05666684278221958750301188997, 5.40988075636041190519329002579, 6.19684865338973261968586990953, 6.86315694199975006540617092476, 8.069815103481042698855808048060, 8.694374034091340172295435063525, 9.389769121730404211990219652602, 10.16981892718208645872715772854

Graph of the $Z$-function along the critical line