L(s) = 1 | + (−1.32 + 1.11i)2-s + (0.173 − 0.984i)4-s + (3.25 − 1.18i)5-s + (−0.173 − 0.984i)7-s + (−0.866 − 1.5i)8-s + (−2.99 + 5.19i)10-s + (−3.25 − 1.18i)11-s + (3.83 + 3.21i)13-s + (1.32 + 1.11i)14-s + (4.69 + 1.71i)16-s + (0.5 + 0.866i)19-s + (−0.601 − 3.41i)20-s + (5.63 − 2.05i)22-s + (1.20 − 6.82i)23-s + (5.36 − 4.49i)25-s − 8.66·26-s + ⋯ |
L(s) = 1 | + (−0.938 + 0.787i)2-s + (0.0868 − 0.492i)4-s + (1.45 − 0.529i)5-s + (−0.0656 − 0.372i)7-s + (−0.306 − 0.530i)8-s + (−0.948 + 1.64i)10-s + (−0.981 − 0.357i)11-s + (1.06 + 0.891i)13-s + (0.354 + 0.297i)14-s + (1.17 + 0.427i)16-s + (0.114 + 0.198i)19-s + (−0.134 − 0.762i)20-s + (1.20 − 0.437i)22-s + (0.250 − 1.42i)23-s + (1.07 − 0.899i)25-s − 1.69·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12452 + 0.131437i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12452 + 0.131437i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (1.32 - 1.11i)T + (0.347 - 1.96i)T^{2} \) |
| 5 | \( 1 + (-3.25 + 1.18i)T + (3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (0.173 + 0.984i)T + (-6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (3.25 + 1.18i)T + (8.42 + 7.07i)T^{2} \) |
| 13 | \( 1 + (-3.83 - 3.21i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.20 + 6.82i)T + (-21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (-2.65 + 2.22i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-0.868 + 4.92i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.65 + 2.22i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (-0.939 - 0.342i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-0.601 - 3.41i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 - 10.3T + 53T^{2} \) |
| 59 | \( 1 + (-3.25 + 1.18i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.347 - 1.96i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (-6.12 - 5.14i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-5.19 + 9i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.766 - 0.642i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (5.30 - 4.45i)T + (14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (-5.19 - 9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (15.9 + 5.81i)T + (74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16981892718208645872715772854, −9.389769121730404211990219652602, −8.694374034091340172295435063525, −8.069815103481042698855808048060, −6.86315694199975006540617092476, −6.19684865338973261968586990953, −5.40988075636041190519329002579, −4.05666684278221958750301188997, −2.42420870351103210421677174294, −0.921340825796910299897261123653,
1.31639878977277672506223145894, 2.41283335485612933447174831786, 3.19886469357307466710158690200, 5.35679754117223076923575777301, 5.69145901754608142307092514204, 6.91443365739882641332494350958, 8.120916185345174593375360539903, 8.907419881708049467630124830791, 9.716318304400094777650370104285, 10.33482212270547605630066930510