L(s) = 1 | + (0.866 + 1.5i)2-s + (−0.5 + 0.866i)4-s + (1.73 − 3i)5-s + (0.5 + 0.866i)7-s + 1.73·8-s + 6·10-s + (−1.73 − 3i)11-s + (−2.5 + 4.33i)13-s + (−0.866 + 1.5i)14-s + (2.49 + 4.33i)16-s − 19-s + (1.73 + 3i)20-s + (3 − 5.19i)22-s + (−3.46 + 6i)23-s + (−3.5 − 6.06i)25-s − 8.66·26-s + ⋯ |
L(s) = 1 | + (0.612 + 1.06i)2-s + (−0.250 + 0.433i)4-s + (0.774 − 1.34i)5-s + (0.188 + 0.327i)7-s + 0.612·8-s + 1.89·10-s + (−0.522 − 0.904i)11-s + (−0.693 + 1.20i)13-s + (−0.231 + 0.400i)14-s + (0.624 + 1.08i)16-s − 0.229·19-s + (0.387 + 0.670i)20-s + (0.639 − 1.10i)22-s + (−0.722 + 1.25i)23-s + (−0.700 − 1.21i)25-s − 1.69·26-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)(0.766−0.642i)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)(0.766−0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
243
= 35
|
Sign: |
0.766−0.642i
|
Analytic conductor: |
1.94036 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ243(82,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 243, ( :1/2), 0.766−0.642i)
|
Particular Values
L(1) |
≈ |
1.79165+0.652107i |
L(21) |
≈ |
1.79165+0.652107i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−0.866−1.5i)T+(−1+1.73i)T2 |
| 5 | 1+(−1.73+3i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−0.5−0.866i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.73+3i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2.5−4.33i)T+(−6.5−11.2i)T2 |
| 17 | 1+17T2 |
| 19 | 1+T+19T2 |
| 23 | 1+(3.46−6i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.73+3i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.5−4.33i)T+(−15.5−26.8i)T2 |
| 37 | 1+T+37T2 |
| 41 | 1+(−1.73+3i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−0.5−0.866i)T+(−21.5+37.2i)T2 |
| 47 | 1+(1.73+3i)T+(−23.5+40.7i)T2 |
| 53 | 1−10.3T+53T2 |
| 59 | 1+(−1.73+3i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1+1.73i)T+(−30.5+52.8i)T2 |
| 67 | 1+(4−6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1+10.3T+71T2 |
| 73 | 1−2T+73T2 |
| 79 | 1+(−0.5−0.866i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−3.46−6i)T+(−41.5+71.8i)T2 |
| 89 | 1+10.3T+89T2 |
| 97 | 1+(8.5+14.7i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50514349076677801374128331738, −11.48282574442425020667876943096, −10.09868768383671068710163975115, −9.070009141545368114370431480391, −8.241147477535537178114824731863, −7.05956508171912337153803989178, −5.76198737946871136007362888362, −5.32027457550671205414922003503, −4.20465437540909186227380024054, −1.83041881739976419156957473316,
2.17825215517418139029996194373, 2.94595583608623063452189652700, 4.37094827743046545745590114849, 5.64648580688680913343882915749, 7.02881533533033942315144179759, 7.82704421819917689819318639729, 9.735941098852421848983030941166, 10.48038938322974848562198398821, 10.78640462950096596729410111834, 12.08927992941335578009892212926