L(s) = 1 | + (0.866 − 1.5i)2-s + (−0.5 − 0.866i)4-s + (1.73 + 3i)5-s + (0.5 − 0.866i)7-s + 1.73·8-s + 6·10-s + (−1.73 + 3i)11-s + (−2.5 − 4.33i)13-s + (−0.866 − 1.5i)14-s + (2.49 − 4.33i)16-s − 19-s + (1.73 − 3i)20-s + (3 + 5.19i)22-s + (−3.46 − 6i)23-s + (−3.5 + 6.06i)25-s − 8.66·26-s + ⋯ |
L(s) = 1 | + (0.612 − 1.06i)2-s + (−0.250 − 0.433i)4-s + (0.774 + 1.34i)5-s + (0.188 − 0.327i)7-s + 0.612·8-s + 1.89·10-s + (−0.522 + 0.904i)11-s + (−0.693 − 1.20i)13-s + (−0.231 − 0.400i)14-s + (0.624 − 1.08i)16-s − 0.229·19-s + (0.387 − 0.670i)20-s + (0.639 + 1.10i)22-s + (−0.722 − 1.25i)23-s + (−0.700 + 1.21i)25-s − 1.69·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.79165 - 0.652107i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79165 - 0.652107i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-0.866 + 1.5i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.73 - 3i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.73 - 3i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.5 + 4.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + T + 19T^{2} \) |
| 23 | \( 1 + (3.46 + 6i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.73 - 3i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 + (-1.73 - 3i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.73 - 3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 10.3T + 53T^{2} \) |
| 59 | \( 1 + (-1.73 - 3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4 + 6.92i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 10.3T + 71T^{2} \) |
| 73 | \( 1 - 2T + 73T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.46 + 6i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 + (8.5 - 14.7i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.08927992941335578009892212926, −10.78640462950096596729410111834, −10.48038938322974848562198398821, −9.735941098852421848983030941166, −7.82704421819917689819318639729, −7.02881533533033942315144179759, −5.64648580688680913343882915749, −4.37094827743046545745590114849, −2.94595583608623063452189652700, −2.17825215517418139029996194373,
1.83041881739976419156957473316, 4.20465437540909186227380024054, 5.32027457550671205414922003503, 5.76198737946871136007362888362, 7.05956508171912337153803989178, 8.241147477535537178114824731863, 9.070009141545368114370431480391, 10.09868768383671068710163975115, 11.48282574442425020667876943096, 12.50514349076677801374128331738