L(s) = 1 | + (−2.25 + 0.821i)2-s + (2.88 − 2.42i)4-s + (−0.0161 − 0.0916i)5-s + (−0.444 − 0.372i)7-s + (−2.12 + 3.67i)8-s + (0.111 + 0.193i)10-s + (0.537 − 3.04i)11-s + (−3.94 − 1.43i)13-s + (1.30 + 0.476i)14-s + (0.462 − 2.62i)16-s + (−0.995 − 1.72i)17-s + (1.92 − 3.33i)19-s + (−0.268 − 0.225i)20-s + (1.28 + 7.31i)22-s + (3.41 − 2.86i)23-s + ⋯ |
L(s) = 1 | + (−1.59 + 0.580i)2-s + (1.44 − 1.21i)4-s + (−0.00722 − 0.0409i)5-s + (−0.167 − 0.140i)7-s + (−0.750 + 1.29i)8-s + (0.0353 + 0.0612i)10-s + (0.161 − 0.918i)11-s + (−1.09 − 0.398i)13-s + (0.349 + 0.127i)14-s + (0.115 − 0.655i)16-s + (−0.241 − 0.418i)17-s + (0.441 − 0.764i)19-s + (−0.0600 − 0.0504i)20-s + (0.275 + 1.55i)22-s + (0.711 − 0.596i)23-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)(0.690+0.723i)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)(0.690+0.723i)Λ(1−s)
Degree: |
2 |
Conductor: |
243
= 35
|
Sign: |
0.690+0.723i
|
Analytic conductor: |
1.94036 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ243(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 243, ( :1/2), 0.690+0.723i)
|
Particular Values
L(1) |
≈ |
0.443536−0.189949i |
L(21) |
≈ |
0.443536−0.189949i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(2.25−0.821i)T+(1.53−1.28i)T2 |
| 5 | 1+(0.0161+0.0916i)T+(−4.69+1.71i)T2 |
| 7 | 1+(0.444+0.372i)T+(1.21+6.89i)T2 |
| 11 | 1+(−0.537+3.04i)T+(−10.3−3.76i)T2 |
| 13 | 1+(3.94+1.43i)T+(9.95+8.35i)T2 |
| 17 | 1+(0.995+1.72i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.92+3.33i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.41+2.86i)T+(3.99−22.6i)T2 |
| 29 | 1+(−6.01+2.18i)T+(22.2−18.6i)T2 |
| 31 | 1+(−1.26+1.06i)T+(5.38−30.5i)T2 |
| 37 | 1+(2.01+3.49i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.03+0.374i)T+(31.4+26.3i)T2 |
| 43 | 1+(1.19−6.79i)T+(−40.4−14.7i)T2 |
| 47 | 1+(2.75+2.30i)T+(8.16+46.2i)T2 |
| 53 | 1+5.40T+53T2 |
| 59 | 1+(−1.78−10.1i)T+(−55.4+20.1i)T2 |
| 61 | 1+(10.1+8.48i)T+(10.5+60.0i)T2 |
| 67 | 1+(−8.30−3.02i)T+(51.3+43.0i)T2 |
| 71 | 1+(−0.572−0.991i)T+(−35.5+61.4i)T2 |
| 73 | 1+(0.0977−0.169i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−6.77+2.46i)T+(60.5−50.7i)T2 |
| 83 | 1+(14.0−5.09i)T+(63.5−53.3i)T2 |
| 89 | 1+(0.776−1.34i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−0.919+5.21i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59238382681422858672527114031, −10.70631629793351394543494549923, −9.860248757774946959917547785024, −8.989681946243214373687135142423, −8.196435808748084010364826132712, −7.15963846597781706516698739374, −6.38689059319190092766324190923, −4.94339336540978008625501247509, −2.77297374496445432863010632444, −0.66830618715030517674368594508,
1.62850608450043783256394884498, 3.01111536636660680953856431517, 4.87111144662319341533896607654, 6.72938766435507366126183420782, 7.49179258777373113565046847428, 8.568445248080881548065742539771, 9.492762677903980064171253932213, 10.08578444066471908712075763994, 11.02655878978542289738971945271, 12.06828444974761772568095486327