L(s) = 1 | + (−2.25 − 0.821i)2-s + (2.88 + 2.42i)4-s + (−0.0161 + 0.0916i)5-s + (−0.444 + 0.372i)7-s + (−2.12 − 3.67i)8-s + (0.111 − 0.193i)10-s + (0.537 + 3.04i)11-s + (−3.94 + 1.43i)13-s + (1.30 − 0.476i)14-s + (0.462 + 2.62i)16-s + (−0.995 + 1.72i)17-s + (1.92 + 3.33i)19-s + (−0.268 + 0.225i)20-s + (1.28 − 7.31i)22-s + (3.41 + 2.86i)23-s + ⋯ |
L(s) = 1 | + (−1.59 − 0.580i)2-s + (1.44 + 1.21i)4-s + (−0.00722 + 0.0409i)5-s + (−0.167 + 0.140i)7-s + (−0.750 − 1.29i)8-s + (0.0353 − 0.0612i)10-s + (0.161 + 0.918i)11-s + (−1.09 + 0.398i)13-s + (0.349 − 0.127i)14-s + (0.115 + 0.655i)16-s + (−0.241 + 0.418i)17-s + (0.441 + 0.764i)19-s + (−0.0600 + 0.0504i)20-s + (0.275 − 1.55i)22-s + (0.711 + 0.596i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.690 - 0.723i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.690 - 0.723i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.443536 + 0.189949i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.443536 + 0.189949i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (2.25 + 0.821i)T + (1.53 + 1.28i)T^{2} \) |
| 5 | \( 1 + (0.0161 - 0.0916i)T + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (0.444 - 0.372i)T + (1.21 - 6.89i)T^{2} \) |
| 11 | \( 1 + (-0.537 - 3.04i)T + (-10.3 + 3.76i)T^{2} \) |
| 13 | \( 1 + (3.94 - 1.43i)T + (9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (0.995 - 1.72i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.92 - 3.33i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.41 - 2.86i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (-6.01 - 2.18i)T + (22.2 + 18.6i)T^{2} \) |
| 31 | \( 1 + (-1.26 - 1.06i)T + (5.38 + 30.5i)T^{2} \) |
| 37 | \( 1 + (2.01 - 3.49i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.03 - 0.374i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (1.19 + 6.79i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (2.75 - 2.30i)T + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + 5.40T + 53T^{2} \) |
| 59 | \( 1 + (-1.78 + 10.1i)T + (-55.4 - 20.1i)T^{2} \) |
| 61 | \( 1 + (10.1 - 8.48i)T + (10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (-8.30 + 3.02i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (-0.572 + 0.991i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (0.0977 + 0.169i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.77 - 2.46i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (14.0 + 5.09i)T + (63.5 + 53.3i)T^{2} \) |
| 89 | \( 1 + (0.776 + 1.34i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.919 - 5.21i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.06828444974761772568095486327, −11.02655878978542289738971945271, −10.08578444066471908712075763994, −9.492762677903980064171253932213, −8.568445248080881548065742539771, −7.49179258777373113565046847428, −6.72938766435507366126183420782, −4.87111144662319341533896607654, −3.01111536636660680953856431517, −1.62850608450043783256394884498,
0.66830618715030517674368594508, 2.77297374496445432863010632444, 4.94339336540978008625501247509, 6.38689059319190092766324190923, 7.15963846597781706516698739374, 8.196435808748084010364826132712, 8.989681946243214373687135142423, 9.860248757774946959917547785024, 10.70631629793351394543494549923, 11.59238382681422858672527114031