Properties

Label 2-3e5-27.25-c1-0-4
Degree $2$
Conductor $243$
Sign $0.978 - 0.207i$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0721 + 0.409i)2-s + (1.71 + 0.625i)4-s + (1.69 − 1.42i)5-s + (1.24 − 0.451i)7-s + (−0.795 + 1.37i)8-s + (0.460 + 0.797i)10-s + (−3.99 − 3.35i)11-s + (−0.00313 − 0.0177i)13-s + (0.0952 + 0.539i)14-s + (2.29 + 1.92i)16-s + (1.56 + 2.71i)17-s + (−0.208 + 0.361i)19-s + (3.80 − 1.38i)20-s + (1.65 − 1.39i)22-s + (0.972 + 0.353i)23-s + ⋯
L(s)  = 1  + (−0.0510 + 0.289i)2-s + (0.858 + 0.312i)4-s + (0.758 − 0.636i)5-s + (0.468 − 0.170i)7-s + (−0.281 + 0.486i)8-s + (0.145 + 0.252i)10-s + (−1.20 − 1.01i)11-s + (−0.000869 − 0.00493i)13-s + (0.0254 + 0.144i)14-s + (0.573 + 0.481i)16-s + (0.379 + 0.658i)17-s + (−0.0478 + 0.0829i)19-s + (0.850 − 0.309i)20-s + (0.353 − 0.296i)22-s + (0.202 + 0.0737i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.207i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 - 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $0.978 - 0.207i$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (217, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ 0.978 - 0.207i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.57375 + 0.164864i\)
\(L(\frac12)\) \(\approx\) \(1.57375 + 0.164864i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (0.0721 - 0.409i)T + (-1.87 - 0.684i)T^{2} \)
5 \( 1 + (-1.69 + 1.42i)T + (0.868 - 4.92i)T^{2} \)
7 \( 1 + (-1.24 + 0.451i)T + (5.36 - 4.49i)T^{2} \)
11 \( 1 + (3.99 + 3.35i)T + (1.91 + 10.8i)T^{2} \)
13 \( 1 + (0.00313 + 0.0177i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (-1.56 - 2.71i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.208 - 0.361i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.972 - 0.353i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (1.35 - 7.68i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (3.50 + 1.27i)T + (23.7 + 19.9i)T^{2} \)
37 \( 1 + (2.21 + 3.83i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (0.638 + 3.61i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (6.36 + 5.34i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (-6.66 + 2.42i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 + 1.30T + 53T^{2} \)
59 \( 1 + (2.83 - 2.37i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (6.49 - 2.36i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (1.91 + 10.8i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (-3.04 - 5.26i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-0.273 + 0.473i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-0.0849 + 0.481i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (-0.801 + 4.54i)T + (-77.9 - 28.3i)T^{2} \)
89 \( 1 + (-1.68 + 2.92i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-7.61 - 6.39i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.24210792119864349831145307147, −10.98692033739861607334057548029, −10.50117215753426721455264522375, −9.011875593047442609782388299489, −8.175901958662447453885875449981, −7.25175054062979100950269671762, −5.87790044578573527147396171079, −5.24404054047464530077155546490, −3.31938531815546667277092779730, −1.80226328653260689950495554847, 1.96559335472103053662194687295, 2.88138239861605174587165751004, 4.92718968029792367314396753378, 6.00691629560190741522052037127, 7.05442492212553151321865045780, 7.948225830523985184087278566107, 9.639118961252779626702895114572, 10.17668127736507280942924757655, 11.03882312088696563738672828618, 11.91861731091374152413235578565

Graph of the $Z$-function along the critical line