L(s) = 1 | + (−0.0721 + 0.409i)2-s + (1.71 + 0.625i)4-s + (1.69 − 1.42i)5-s + (1.24 − 0.451i)7-s + (−0.795 + 1.37i)8-s + (0.460 + 0.797i)10-s + (−3.99 − 3.35i)11-s + (−0.00313 − 0.0177i)13-s + (0.0952 + 0.539i)14-s + (2.29 + 1.92i)16-s + (1.56 + 2.71i)17-s + (−0.208 + 0.361i)19-s + (3.80 − 1.38i)20-s + (1.65 − 1.39i)22-s + (0.972 + 0.353i)23-s + ⋯ |
L(s) = 1 | + (−0.0510 + 0.289i)2-s + (0.858 + 0.312i)4-s + (0.758 − 0.636i)5-s + (0.468 − 0.170i)7-s + (−0.281 + 0.486i)8-s + (0.145 + 0.252i)10-s + (−1.20 − 1.01i)11-s + (−0.000869 − 0.00493i)13-s + (0.0254 + 0.144i)14-s + (0.573 + 0.481i)16-s + (0.379 + 0.658i)17-s + (−0.0478 + 0.0829i)19-s + (0.850 − 0.309i)20-s + (0.353 − 0.296i)22-s + (0.202 + 0.0737i)23-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)(0.978−0.207i)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)(0.978−0.207i)Λ(1−s)
Degree: |
2 |
Conductor: |
243
= 35
|
Sign: |
0.978−0.207i
|
Analytic conductor: |
1.94036 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ243(217,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 243, ( :1/2), 0.978−0.207i)
|
Particular Values
L(1) |
≈ |
1.57375+0.164864i |
L(21) |
≈ |
1.57375+0.164864i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(0.0721−0.409i)T+(−1.87−0.684i)T2 |
| 5 | 1+(−1.69+1.42i)T+(0.868−4.92i)T2 |
| 7 | 1+(−1.24+0.451i)T+(5.36−4.49i)T2 |
| 11 | 1+(3.99+3.35i)T+(1.91+10.8i)T2 |
| 13 | 1+(0.00313+0.0177i)T+(−12.2+4.44i)T2 |
| 17 | 1+(−1.56−2.71i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.208−0.361i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.972−0.353i)T+(17.6+14.7i)T2 |
| 29 | 1+(1.35−7.68i)T+(−27.2−9.91i)T2 |
| 31 | 1+(3.50+1.27i)T+(23.7+19.9i)T2 |
| 37 | 1+(2.21+3.83i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.638+3.61i)T+(−38.5+14.0i)T2 |
| 43 | 1+(6.36+5.34i)T+(7.46+42.3i)T2 |
| 47 | 1+(−6.66+2.42i)T+(36.0−30.2i)T2 |
| 53 | 1+1.30T+53T2 |
| 59 | 1+(2.83−2.37i)T+(10.2−58.1i)T2 |
| 61 | 1+(6.49−2.36i)T+(46.7−39.2i)T2 |
| 67 | 1+(1.91+10.8i)T+(−62.9+22.9i)T2 |
| 71 | 1+(−3.04−5.26i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−0.273+0.473i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−0.0849+0.481i)T+(−74.2−27.0i)T2 |
| 83 | 1+(−0.801+4.54i)T+(−77.9−28.3i)T2 |
| 89 | 1+(−1.68+2.92i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−7.61−6.39i)T+(16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.24210792119864349831145307147, −10.98692033739861607334057548029, −10.50117215753426721455264522375, −9.011875593047442609782388299489, −8.175901958662447453885875449981, −7.25175054062979100950269671762, −5.87790044578573527147396171079, −5.24404054047464530077155546490, −3.31938531815546667277092779730, −1.80226328653260689950495554847,
1.96559335472103053662194687295, 2.88138239861605174587165751004, 4.92718968029792367314396753378, 6.00691629560190741522052037127, 7.05442492212553151321865045780, 7.948225830523985184087278566107, 9.639118961252779626702895114572, 10.17668127736507280942924757655, 11.03882312088696563738672828618, 11.91861731091374152413235578565