Properties

Label 2-3e5-27.13-c1-0-3
Degree $2$
Conductor $243$
Sign $0.978 + 0.207i$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0721 − 0.409i)2-s + (1.71 − 0.625i)4-s + (1.69 + 1.42i)5-s + (1.24 + 0.451i)7-s + (−0.795 − 1.37i)8-s + (0.460 − 0.797i)10-s + (−3.99 + 3.35i)11-s + (−0.00313 + 0.0177i)13-s + (0.0952 − 0.539i)14-s + (2.29 − 1.92i)16-s + (1.56 − 2.71i)17-s + (−0.208 − 0.361i)19-s + (3.80 + 1.38i)20-s + (1.65 + 1.39i)22-s + (0.972 − 0.353i)23-s + ⋯
L(s)  = 1  + (−0.0510 − 0.289i)2-s + (0.858 − 0.312i)4-s + (0.758 + 0.636i)5-s + (0.468 + 0.170i)7-s + (−0.281 − 0.486i)8-s + (0.145 − 0.252i)10-s + (−1.20 + 1.01i)11-s + (−0.000869 + 0.00493i)13-s + (0.0254 − 0.144i)14-s + (0.573 − 0.481i)16-s + (0.379 − 0.658i)17-s + (−0.0478 − 0.0829i)19-s + (0.850 + 0.309i)20-s + (0.353 + 0.296i)22-s + (0.202 − 0.0737i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $0.978 + 0.207i$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ 0.978 + 0.207i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.57375 - 0.164864i\)
\(L(\frac12)\) \(\approx\) \(1.57375 - 0.164864i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (0.0721 + 0.409i)T + (-1.87 + 0.684i)T^{2} \)
5 \( 1 + (-1.69 - 1.42i)T + (0.868 + 4.92i)T^{2} \)
7 \( 1 + (-1.24 - 0.451i)T + (5.36 + 4.49i)T^{2} \)
11 \( 1 + (3.99 - 3.35i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (0.00313 - 0.0177i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (-1.56 + 2.71i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.208 + 0.361i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.972 + 0.353i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (1.35 + 7.68i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (3.50 - 1.27i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (2.21 - 3.83i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (0.638 - 3.61i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (6.36 - 5.34i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (-6.66 - 2.42i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 + 1.30T + 53T^{2} \)
59 \( 1 + (2.83 + 2.37i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (6.49 + 2.36i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (1.91 - 10.8i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (-3.04 + 5.26i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-0.273 - 0.473i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-0.0849 - 0.481i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (-0.801 - 4.54i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (-1.68 - 2.92i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-7.61 + 6.39i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.91861731091374152413235578565, −11.03882312088696563738672828618, −10.17668127736507280942924757655, −9.639118961252779626702895114572, −7.948225830523985184087278566107, −7.05442492212553151321865045780, −6.00691629560190741522052037127, −4.92718968029792367314396753378, −2.88138239861605174587165751004, −1.96559335472103053662194687295, 1.80226328653260689950495554847, 3.31938531815546667277092779730, 5.24404054047464530077155546490, 5.87790044578573527147396171079, 7.25175054062979100950269671762, 8.175901958662447453885875449981, 9.011875593047442609782388299489, 10.50117215753426721455264522375, 10.98692033739861607334057548029, 12.24210792119864349831145307147

Graph of the $Z$-function along the critical line