Properties

Label 2-3e4-1.1-c11-0-9
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $62.2357$
Root an. cond. $7.88896$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 50.9·2-s + 548.·4-s − 7.10e3·5-s − 7.89e4·7-s − 7.64e4·8-s − 3.61e5·10-s + 4.12e5·11-s − 2.71e5·13-s − 4.02e6·14-s − 5.01e6·16-s − 1.90e6·17-s + 1.56e7·19-s − 3.89e6·20-s + 2.10e7·22-s + 4.27e7·23-s + 1.61e6·25-s − 1.38e7·26-s − 4.32e7·28-s + 5.17e7·29-s + 1.31e8·31-s − 9.91e7·32-s − 9.69e7·34-s + 5.60e8·35-s − 4.81e8·37-s + 7.96e8·38-s + 5.42e8·40-s + 9.42e8·41-s + ⋯
L(s)  = 1  + 1.12·2-s + 0.267·4-s − 1.01·5-s − 1.77·7-s − 0.824·8-s − 1.14·10-s + 0.772·11-s − 0.202·13-s − 1.99·14-s − 1.19·16-s − 0.325·17-s + 1.44·19-s − 0.272·20-s + 0.869·22-s + 1.38·23-s + 0.0330·25-s − 0.228·26-s − 0.475·28-s + 0.468·29-s + 0.823·31-s − 0.522·32-s − 0.366·34-s + 1.80·35-s − 1.14·37-s + 1.63·38-s + 0.838·40-s + 1.27·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(62.2357\)
Root analytic conductor: \(7.88896\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(1.677192381\)
\(L(\frac12)\) \(\approx\) \(1.677192381\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 50.9T + 2.04e3T^{2} \)
5 \( 1 + 7.10e3T + 4.88e7T^{2} \)
7 \( 1 + 7.89e4T + 1.97e9T^{2} \)
11 \( 1 - 4.12e5T + 2.85e11T^{2} \)
13 \( 1 + 2.71e5T + 1.79e12T^{2} \)
17 \( 1 + 1.90e6T + 3.42e13T^{2} \)
19 \( 1 - 1.56e7T + 1.16e14T^{2} \)
23 \( 1 - 4.27e7T + 9.52e14T^{2} \)
29 \( 1 - 5.17e7T + 1.22e16T^{2} \)
31 \( 1 - 1.31e8T + 2.54e16T^{2} \)
37 \( 1 + 4.81e8T + 1.77e17T^{2} \)
41 \( 1 - 9.42e8T + 5.50e17T^{2} \)
43 \( 1 + 1.59e9T + 9.29e17T^{2} \)
47 \( 1 + 2.19e9T + 2.47e18T^{2} \)
53 \( 1 - 3.39e9T + 9.26e18T^{2} \)
59 \( 1 + 6.45e9T + 3.01e19T^{2} \)
61 \( 1 + 1.80e9T + 4.35e19T^{2} \)
67 \( 1 + 6.18e9T + 1.22e20T^{2} \)
71 \( 1 - 8.00e9T + 2.31e20T^{2} \)
73 \( 1 - 8.88e9T + 3.13e20T^{2} \)
79 \( 1 - 4.10e10T + 7.47e20T^{2} \)
83 \( 1 + 5.33e10T + 1.28e21T^{2} \)
89 \( 1 + 3.21e10T + 2.77e21T^{2} \)
97 \( 1 - 1.27e11T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.25599133537188966467273369404, −11.54241610495673363440653023194, −9.822261145094996110315952572470, −8.878089146800479149132870943601, −7.13906830472322589286191903814, −6.25166460342265692349136504551, −4.83504872227111191040380877454, −3.58738829713565576154511474915, −3.06581066072467803715948490135, −0.56761593365112408435218428316, 0.56761593365112408435218428316, 3.06581066072467803715948490135, 3.58738829713565576154511474915, 4.83504872227111191040380877454, 6.25166460342265692349136504551, 7.13906830472322589286191903814, 8.878089146800479149132870943601, 9.822261145094996110315952572470, 11.54241610495673363440653023194, 12.25599133537188966467273369404

Graph of the $Z$-function along the critical line