Properties

Label 2-3e4-1.1-c11-0-40
Degree $2$
Conductor $81$
Sign $-1$
Analytic cond. $62.2357$
Root an. cond. $7.88896$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 73.5·2-s + 3.35e3·4-s + 3.41e3·5-s − 5.41e4·7-s + 9.61e4·8-s + 2.51e5·10-s − 6.46e5·11-s − 2.07e4·13-s − 3.98e6·14-s + 1.93e5·16-s + 5.43e6·17-s − 1.12e7·19-s + 1.14e7·20-s − 4.75e7·22-s − 5.06e7·23-s − 3.71e7·25-s − 1.52e6·26-s − 1.81e8·28-s − 5.57e7·29-s + 2.69e8·31-s − 1.82e8·32-s + 3.99e8·34-s − 1.85e8·35-s − 2.61e8·37-s − 8.25e8·38-s + 3.28e8·40-s + 9.21e8·41-s + ⋯
L(s)  = 1  + 1.62·2-s + 1.63·4-s + 0.489·5-s − 1.21·7-s + 1.03·8-s + 0.794·10-s − 1.21·11-s − 0.0154·13-s − 1.97·14-s + 0.0461·16-s + 0.928·17-s − 1.04·19-s + 0.801·20-s − 1.96·22-s − 1.64·23-s − 0.760·25-s − 0.0251·26-s − 1.99·28-s − 0.504·29-s + 1.68·31-s − 0.962·32-s + 1.50·34-s − 0.596·35-s − 0.620·37-s − 1.69·38-s + 0.507·40-s + 1.24·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-1$
Analytic conductor: \(62.2357\)
Root analytic conductor: \(7.88896\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 73.5T + 2.04e3T^{2} \)
5 \( 1 - 3.41e3T + 4.88e7T^{2} \)
7 \( 1 + 5.41e4T + 1.97e9T^{2} \)
11 \( 1 + 6.46e5T + 2.85e11T^{2} \)
13 \( 1 + 2.07e4T + 1.79e12T^{2} \)
17 \( 1 - 5.43e6T + 3.42e13T^{2} \)
19 \( 1 + 1.12e7T + 1.16e14T^{2} \)
23 \( 1 + 5.06e7T + 9.52e14T^{2} \)
29 \( 1 + 5.57e7T + 1.22e16T^{2} \)
31 \( 1 - 2.69e8T + 2.54e16T^{2} \)
37 \( 1 + 2.61e8T + 1.77e17T^{2} \)
41 \( 1 - 9.21e8T + 5.50e17T^{2} \)
43 \( 1 - 1.86e9T + 9.29e17T^{2} \)
47 \( 1 + 1.85e9T + 2.47e18T^{2} \)
53 \( 1 + 2.53e9T + 9.26e18T^{2} \)
59 \( 1 + 5.61e9T + 3.01e19T^{2} \)
61 \( 1 + 3.69e9T + 4.35e19T^{2} \)
67 \( 1 + 2.50e9T + 1.22e20T^{2} \)
71 \( 1 + 5.97e9T + 2.31e20T^{2} \)
73 \( 1 - 1.54e10T + 3.13e20T^{2} \)
79 \( 1 + 3.94e10T + 7.47e20T^{2} \)
83 \( 1 - 1.71e8T + 1.28e21T^{2} \)
89 \( 1 - 7.91e10T + 2.77e21T^{2} \)
97 \( 1 - 3.54e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.10482496722081550283859314971, −10.60512044335961466595874586791, −9.645407913524589772179263878584, −7.80324946067355830089997042108, −6.28338095459945264795764667003, −5.75484397839954307474997365696, −4.36364934106021964997147443628, −3.16661197482429378571005642602, −2.20943009661125346001579692954, 0, 2.20943009661125346001579692954, 3.16661197482429378571005642602, 4.36364934106021964997147443628, 5.75484397839954307474997365696, 6.28338095459945264795764667003, 7.80324946067355830089997042108, 9.645407913524589772179263878584, 10.60512044335961466595874586791, 12.10482496722081550283859314971

Graph of the $Z$-function along the critical line