Properties

Label 2-3e4-1.1-c11-0-11
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $62.2357$
Root an. cond. $7.88896$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 38.9·2-s − 533.·4-s − 3.38e3·5-s + 3.20e4·7-s − 1.00e5·8-s − 1.31e5·10-s + 6.72e5·11-s − 1.69e6·13-s + 1.24e6·14-s − 2.81e6·16-s − 5.41e6·17-s + 8.84e6·19-s + 1.80e6·20-s + 2.61e7·22-s − 5.22e6·23-s − 3.73e7·25-s − 6.60e7·26-s − 1.70e7·28-s + 7.23e7·29-s + 2.06e8·31-s + 9.60e7·32-s − 2.10e8·34-s − 1.08e8·35-s + 7.22e8·37-s + 3.44e8·38-s + 3.39e8·40-s + 4.29e8·41-s + ⋯
L(s)  = 1  + 0.860·2-s − 0.260·4-s − 0.484·5-s + 0.720·7-s − 1.08·8-s − 0.416·10-s + 1.25·11-s − 1.26·13-s + 0.619·14-s − 0.671·16-s − 0.924·17-s + 0.819·19-s + 0.126·20-s + 1.08·22-s − 0.169·23-s − 0.765·25-s − 1.08·26-s − 0.187·28-s + 0.654·29-s + 1.29·31-s + 0.506·32-s − 0.795·34-s − 0.348·35-s + 1.71·37-s + 0.704·38-s + 0.524·40-s + 0.578·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(62.2357\)
Root analytic conductor: \(7.88896\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(2.567836457\)
\(L(\frac12)\) \(\approx\) \(2.567836457\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 38.9T + 2.04e3T^{2} \)
5 \( 1 + 3.38e3T + 4.88e7T^{2} \)
7 \( 1 - 3.20e4T + 1.97e9T^{2} \)
11 \( 1 - 6.72e5T + 2.85e11T^{2} \)
13 \( 1 + 1.69e6T + 1.79e12T^{2} \)
17 \( 1 + 5.41e6T + 3.42e13T^{2} \)
19 \( 1 - 8.84e6T + 1.16e14T^{2} \)
23 \( 1 + 5.22e6T + 9.52e14T^{2} \)
29 \( 1 - 7.23e7T + 1.22e16T^{2} \)
31 \( 1 - 2.06e8T + 2.54e16T^{2} \)
37 \( 1 - 7.22e8T + 1.77e17T^{2} \)
41 \( 1 - 4.29e8T + 5.50e17T^{2} \)
43 \( 1 - 1.37e9T + 9.29e17T^{2} \)
47 \( 1 + 7.40e7T + 2.47e18T^{2} \)
53 \( 1 - 5.54e9T + 9.26e18T^{2} \)
59 \( 1 - 3.61e9T + 3.01e19T^{2} \)
61 \( 1 - 6.16e9T + 4.35e19T^{2} \)
67 \( 1 + 6.23e9T + 1.22e20T^{2} \)
71 \( 1 + 1.73e10T + 2.31e20T^{2} \)
73 \( 1 + 1.89e10T + 3.13e20T^{2} \)
79 \( 1 + 3.58e10T + 7.47e20T^{2} \)
83 \( 1 - 2.49e10T + 1.28e21T^{2} \)
89 \( 1 - 7.94e10T + 2.77e21T^{2} \)
97 \( 1 - 6.65e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.95799017895248668420108178365, −11.60364389954845948073482330027, −9.811156245048089334645963501145, −8.763241415836236894946824763392, −7.47265649583794369656941162950, −6.09229979962573886306475397927, −4.71441840736527657237252584897, −4.07059021525319392863725063273, −2.54723293853977815039224814343, −0.76273872210096868901037398378, 0.76273872210096868901037398378, 2.54723293853977815039224814343, 4.07059021525319392863725063273, 4.71441840736527657237252584897, 6.09229979962573886306475397927, 7.47265649583794369656941162950, 8.763241415836236894946824763392, 9.811156245048089334645963501145, 11.60364389954845948073482330027, 11.95799017895248668420108178365

Graph of the $Z$-function along the critical line