Properties

Label 2-3e3-1.1-c15-0-8
Degree $2$
Conductor $27$
Sign $-1$
Analytic cond. $38.5272$
Root an. cond. $6.20703$
Motivic weight $15$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 225.·2-s + 1.78e4·4-s − 3.38e5·5-s + 6.26e5·7-s + 3.35e6·8-s + 7.60e7·10-s − 5.98e7·11-s + 1.31e8·13-s − 1.40e8·14-s − 1.34e9·16-s + 9.05e8·17-s + 3.66e9·19-s − 6.03e9·20-s + 1.34e10·22-s + 2.86e10·23-s + 8.38e10·25-s − 2.94e10·26-s + 1.11e10·28-s − 1.63e11·29-s − 1.17e10·31-s + 1.91e11·32-s − 2.03e11·34-s − 2.11e11·35-s + 6.27e11·37-s − 8.24e11·38-s − 1.13e12·40-s − 5.13e11·41-s + ⋯
L(s)  = 1  − 1.24·2-s + 0.545·4-s − 1.93·5-s + 0.287·7-s + 0.565·8-s + 2.40·10-s − 0.926·11-s + 0.579·13-s − 0.357·14-s − 1.24·16-s + 0.535·17-s + 0.940·19-s − 1.05·20-s + 1.15·22-s + 1.75·23-s + 2.74·25-s − 0.720·26-s + 0.156·28-s − 1.75·29-s − 0.0764·31-s + 0.985·32-s − 0.665·34-s − 0.556·35-s + 1.08·37-s − 1.16·38-s − 1.09·40-s − 0.412·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $-1$
Analytic conductor: \(38.5272\)
Root analytic conductor: \(6.20703\)
Motivic weight: \(15\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27,\ (\ :15/2),\ -1)\)

Particular Values

\(L(8)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 225.T + 3.27e4T^{2} \)
5 \( 1 + 3.38e5T + 3.05e10T^{2} \)
7 \( 1 - 6.26e5T + 4.74e12T^{2} \)
11 \( 1 + 5.98e7T + 4.17e15T^{2} \)
13 \( 1 - 1.31e8T + 5.11e16T^{2} \)
17 \( 1 - 9.05e8T + 2.86e18T^{2} \)
19 \( 1 - 3.66e9T + 1.51e19T^{2} \)
23 \( 1 - 2.86e10T + 2.66e20T^{2} \)
29 \( 1 + 1.63e11T + 8.62e21T^{2} \)
31 \( 1 + 1.17e10T + 2.34e22T^{2} \)
37 \( 1 - 6.27e11T + 3.33e23T^{2} \)
41 \( 1 + 5.13e11T + 1.55e24T^{2} \)
43 \( 1 - 3.28e11T + 3.17e24T^{2} \)
47 \( 1 + 1.43e12T + 1.20e25T^{2} \)
53 \( 1 - 2.56e12T + 7.31e25T^{2} \)
59 \( 1 + 2.85e13T + 3.65e26T^{2} \)
61 \( 1 + 1.68e13T + 6.02e26T^{2} \)
67 \( 1 + 4.75e13T + 2.46e27T^{2} \)
71 \( 1 - 1.04e14T + 5.87e27T^{2} \)
73 \( 1 + 8.48e13T + 8.90e27T^{2} \)
79 \( 1 + 2.07e14T + 2.91e28T^{2} \)
83 \( 1 - 3.60e14T + 6.11e28T^{2} \)
89 \( 1 - 3.31e14T + 1.74e29T^{2} \)
97 \( 1 - 1.15e15T + 6.33e29T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05058292495260462524273716040, −11.49494039200145908720027309218, −10.77966398670126750310820409873, −9.096079873228300557454317209759, −7.919124078567173906617201703797, −7.39207651445010281029194968688, −4.81983187781338394732395635050, −3.31047861056560793721377912457, −1.06949547497464029899679170480, 0, 1.06949547497464029899679170480, 3.31047861056560793721377912457, 4.81983187781338394732395635050, 7.39207651445010281029194968688, 7.919124078567173906617201703797, 9.096079873228300557454317209759, 10.77966398670126750310820409873, 11.49494039200145908720027309218, 13.05058292495260462524273716040

Graph of the $Z$-function along the critical line