Properties

Label 2-3e3-1.1-c15-0-19
Degree $2$
Conductor $27$
Sign $-1$
Analytic cond. $38.5272$
Root an. cond. $6.20703$
Motivic weight $15$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 269.·2-s + 3.97e4·4-s + 2.96e4·5-s − 1.74e6·7-s + 1.87e6·8-s + 7.97e6·10-s − 1.00e8·11-s − 9.38e7·13-s − 4.69e8·14-s − 7.96e8·16-s + 1.06e9·17-s − 4.26e8·19-s + 1.17e9·20-s − 2.70e10·22-s + 1.12e10·23-s − 2.96e10·25-s − 2.52e10·26-s − 6.92e10·28-s − 2.67e10·29-s − 2.36e11·31-s − 2.76e11·32-s + 2.85e11·34-s − 5.16e10·35-s + 2.15e11·37-s − 1.14e11·38-s + 5.55e10·40-s + 7.40e11·41-s + ⋯
L(s)  = 1  + 1.48·2-s + 1.21·4-s + 0.169·5-s − 0.800·7-s + 0.316·8-s + 0.252·10-s − 1.55·11-s − 0.414·13-s − 1.19·14-s − 0.741·16-s + 0.627·17-s − 0.109·19-s + 0.205·20-s − 2.31·22-s + 0.685·23-s − 0.971·25-s − 0.617·26-s − 0.970·28-s − 0.287·29-s − 1.54·31-s − 1.42·32-s + 0.933·34-s − 0.135·35-s + 0.372·37-s − 0.162·38-s + 0.0536·40-s + 0.593·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $-1$
Analytic conductor: \(38.5272\)
Root analytic conductor: \(6.20703\)
Motivic weight: \(15\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27,\ (\ :15/2),\ -1)\)

Particular Values

\(L(8)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 269.T + 3.27e4T^{2} \)
5 \( 1 - 2.96e4T + 3.05e10T^{2} \)
7 \( 1 + 1.74e6T + 4.74e12T^{2} \)
11 \( 1 + 1.00e8T + 4.17e15T^{2} \)
13 \( 1 + 9.38e7T + 5.11e16T^{2} \)
17 \( 1 - 1.06e9T + 2.86e18T^{2} \)
19 \( 1 + 4.26e8T + 1.51e19T^{2} \)
23 \( 1 - 1.12e10T + 2.66e20T^{2} \)
29 \( 1 + 2.67e10T + 8.62e21T^{2} \)
31 \( 1 + 2.36e11T + 2.34e22T^{2} \)
37 \( 1 - 2.15e11T + 3.33e23T^{2} \)
41 \( 1 - 7.40e11T + 1.55e24T^{2} \)
43 \( 1 - 3.44e12T + 3.17e24T^{2} \)
47 \( 1 + 5.09e12T + 1.20e25T^{2} \)
53 \( 1 + 9.29e12T + 7.31e25T^{2} \)
59 \( 1 - 2.26e13T + 3.65e26T^{2} \)
61 \( 1 + 3.91e13T + 6.02e26T^{2} \)
67 \( 1 - 8.17e13T + 2.46e27T^{2} \)
71 \( 1 + 1.01e14T + 5.87e27T^{2} \)
73 \( 1 - 8.97e13T + 8.90e27T^{2} \)
79 \( 1 - 1.90e14T + 2.91e28T^{2} \)
83 \( 1 - 2.73e14T + 6.11e28T^{2} \)
89 \( 1 + 4.82e14T + 1.74e29T^{2} \)
97 \( 1 + 2.09e13T + 6.33e29T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10070363185626613391695336924, −12.59328627843039872794403701358, −11.02568211431018052337644394610, −9.561912670945579669672539821276, −7.53106613004233812535391790807, −6.01032813804225600328598345430, −5.02886622871136597184737912067, −3.49019362459814829087653600775, −2.40212748807782095522340241635, 0, 2.40212748807782095522340241635, 3.49019362459814829087653600775, 5.02886622871136597184737912067, 6.01032813804225600328598345430, 7.53106613004233812535391790807, 9.561912670945579669672539821276, 11.02568211431018052337644394610, 12.59328627843039872794403701358, 13.10070363185626613391695336924

Graph of the $Z$-function along the critical line