L(s) = 1 | − i·2-s − 4-s − i·5-s + 2·7-s + i·8-s − 10-s + i·11-s − 2i·14-s + 16-s + i·20-s + 22-s − 25-s − 2·28-s + 2·31-s − i·32-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s − i·5-s + 2·7-s + i·8-s − 10-s + i·11-s − 2i·14-s + 16-s + i·20-s + 22-s − 25-s − 2·28-s + 2·31-s − i·32-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)iΛ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), i)
|
Particular Values
L(21) |
≈ |
1.505336606 |
L(21) |
≈ |
1.505336606 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 5 | 1+iT |
| 11 | 1−iT |
good | 7 | 1−2T+T2 |
| 13 | 1−T2 |
| 17 | 1+T2 |
| 19 | 1+T2 |
| 23 | 1−T2 |
| 29 | 1+T2 |
| 31 | 1−2T+T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1−T2 |
| 53 | 1+T2 |
| 59 | 1−2iT−T2 |
| 61 | 1+T2 |
| 67 | 1+T2 |
| 71 | 1+T2 |
| 73 | 1+2T+T2 |
| 79 | 1−T2 |
| 83 | 1+2iT−T2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.580414721650511879668141091532, −7.961816500586970972920250543258, −7.36518257735511160934061330984, −5.87011552526503377948278442886, −5.09413490146369778547891403753, −4.50394828099472526858382166202, −4.21384490743126231566117374288, −2.67413679028139330027831027805, −1.76413640980303348561429978669, −1.15558673807892511001808746899,
1.19201641050947408877953704260, 2.50981962471622191764769163691, 3.61688609705468385581572613931, 4.48338386408034951493369863720, 5.17147362267924256959092263516, 5.93729789456770226597164268036, 6.62835101086678887862020391294, 7.43773208708229555394699808320, 8.164318686580281447868451982385, 8.332597739475181929107133254285