L(s) = 1 | − i·2-s − 4-s − i·5-s + 2·7-s + i·8-s − 10-s + i·11-s − 2i·14-s + 16-s + i·20-s + 22-s − 25-s − 2·28-s + 2·31-s − i·32-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s − i·5-s + 2·7-s + i·8-s − 10-s + i·11-s − 2i·14-s + 16-s + i·20-s + 22-s − 25-s − 2·28-s + 2·31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.505336606\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.505336606\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 11 | \( 1 - iT \) |
good | 7 | \( 1 - 2T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 2T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - 2iT - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + 2T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + 2iT - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.580414721650511879668141091532, −7.961816500586970972920250543258, −7.36518257735511160934061330984, −5.87011552526503377948278442886, −5.09413490146369778547891403753, −4.50394828099472526858382166202, −4.21384490743126231566117374288, −2.67413679028139330027831027805, −1.76413640980303348561429978669, −1.15558673807892511001808746899,
1.19201641050947408877953704260, 2.50981962471622191764769163691, 3.61688609705468385581572613931, 4.48338386408034951493369863720, 5.17147362267924256959092263516, 5.93729789456770226597164268036, 6.62835101086678887862020391294, 7.43773208708229555394699808320, 8.164318686580281447868451982385, 8.332597739475181929107133254285