Basic invariants
Dimension: | $2$ |
Group: | $Q_8:C_2$ |
Conductor: | \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Artin number field: | Galois closure of 8.0.9032601600.3 |
Galois orbit size: | $2$ |
Smallest permutation container: | $Q_8:C_2$ |
Parity: | odd |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{-6}, \sqrt{-55})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 22 + 181\cdot 337 + 331\cdot 337^{2} + 143\cdot 337^{3} + 234\cdot 337^{4} +O(337^{5})\) |
$r_{ 2 }$ | $=$ | \( 79 + 189\cdot 337 + 54\cdot 337^{2} + 15\cdot 337^{3} + 331\cdot 337^{4} +O(337^{5})\) |
$r_{ 3 }$ | $=$ | \( 102 + 305\cdot 337 + 130\cdot 337^{2} + 210\cdot 337^{3} + 161\cdot 337^{4} +O(337^{5})\) |
$r_{ 4 }$ | $=$ | \( 141 + 162\cdot 337 + 67\cdot 337^{2} + 165\cdot 337^{3} + 85\cdot 337^{4} +O(337^{5})\) |
$r_{ 5 }$ | $=$ | \( 194 + 238\cdot 337 + 86\cdot 337^{2} + 118\cdot 337^{3} + 224\cdot 337^{4} +O(337^{5})\) |
$r_{ 6 }$ | $=$ | \( 213 + 317\cdot 337 + 294\cdot 337^{2} + 61\cdot 337^{3} + 190\cdot 337^{4} +O(337^{5})\) |
$r_{ 7 }$ | $=$ | \( 300 + 12\cdot 337 + 317\cdot 337^{2} + 302\cdot 337^{3} + 163\cdot 337^{4} +O(337^{5})\) |
$r_{ 8 }$ | $=$ | \( 301 + 277\cdot 337 + 64\cdot 337^{2} + 330\cdot 337^{3} + 293\cdot 337^{4} +O(337^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character values | |
$c1$ | $c2$ | |||
$1$ | $1$ | $()$ | $2$ | $2$ |
$1$ | $2$ | $(1,7)(2,8)(3,5)(4,6)$ | $-2$ | $-2$ |
$2$ | $2$ | $(2,8)(4,6)$ | $0$ | $0$ |
$2$ | $2$ | $(1,8)(2,7)(3,4)(5,6)$ | $0$ | $0$ |
$2$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ | $0$ |
$1$ | $4$ | $(1,3,7,5)(2,6,8,4)$ | $-2 \zeta_{4}$ | $2 \zeta_{4}$ |
$1$ | $4$ | $(1,5,7,3)(2,4,8,6)$ | $2 \zeta_{4}$ | $-2 \zeta_{4}$ |
$2$ | $4$ | $(1,3,7,5)(2,4,8,6)$ | $0$ | $0$ |
$2$ | $4$ | $(1,8,7,2)(3,4,5,6)$ | $0$ | $0$ |
$2$ | $4$ | $(1,4,7,6)(2,5,8,3)$ | $0$ | $0$ |