Properties

Label 2.3960.8t11.h
Dimension $2$
Group $Q_8:C_2$
Conductor $3960$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Artin number field: Galois closure of 8.0.9032601600.3
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-6}, \sqrt{-55})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 22 + 181\cdot 337 + 331\cdot 337^{2} + 143\cdot 337^{3} + 234\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 79 + 189\cdot 337 + 54\cdot 337^{2} + 15\cdot 337^{3} + 331\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 102 + 305\cdot 337 + 130\cdot 337^{2} + 210\cdot 337^{3} + 161\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 141 + 162\cdot 337 + 67\cdot 337^{2} + 165\cdot 337^{3} + 85\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 194 + 238\cdot 337 + 86\cdot 337^{2} + 118\cdot 337^{3} + 224\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 213 + 317\cdot 337 + 294\cdot 337^{2} + 61\cdot 337^{3} + 190\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 300 + 12\cdot 337 + 317\cdot 337^{2} + 302\cdot 337^{3} + 163\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 301 + 277\cdot 337 + 64\cdot 337^{2} + 330\cdot 337^{3} + 293\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8)(4,6)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,3,7,5)(2,4,8,6)$
$(1,8,7,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $-2$ $-2$
$2$ $2$ $(2,8)(4,6)$ $0$ $0$
$2$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$ $0$
$1$ $4$ $(1,3,7,5)(2,6,8,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,5,7,3)(2,4,8,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,3,7,5)(2,4,8,6)$ $0$ $0$
$2$ $4$ $(1,8,7,2)(3,4,5,6)$ $0$ $0$
$2$ $4$ $(1,4,7,6)(2,5,8,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.