Properties

Label 2-392-1.1-c1-0-5
Degree $2$
Conductor $392$
Sign $1$
Analytic cond. $3.13013$
Root an. cond. $1.76921$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 6·9-s − 11-s + 2·13-s − 3·15-s + 3·17-s + 5·19-s − 3·23-s − 4·25-s + 9·27-s − 6·29-s − 31-s − 3·33-s − 5·37-s + 6·39-s − 10·41-s − 4·43-s − 6·45-s + 47-s + 9·51-s − 9·53-s + 55-s + 15·57-s + 3·59-s + 3·61-s − 2·65-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 2·9-s − 0.301·11-s + 0.554·13-s − 0.774·15-s + 0.727·17-s + 1.14·19-s − 0.625·23-s − 4/5·25-s + 1.73·27-s − 1.11·29-s − 0.179·31-s − 0.522·33-s − 0.821·37-s + 0.960·39-s − 1.56·41-s − 0.609·43-s − 0.894·45-s + 0.145·47-s + 1.26·51-s − 1.23·53-s + 0.134·55-s + 1.98·57-s + 0.390·59-s + 0.384·61-s − 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(3.13013\)
Root analytic conductor: \(1.76921\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 392,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.221527878\)
\(L(\frac12)\) \(\approx\) \(2.221527878\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.32363161411022171833837316965, −10.03255565958818673784718261940, −9.454419896289841119816933895926, −8.351257157353401744523838901572, −7.88711144460196356605409250981, −6.97371055422473493569992163867, −5.37275328661669194907215278623, −3.85088303636964375675997178618, −3.24705941901609595501905536901, −1.80924568747514375985943654352, 1.80924568747514375985943654352, 3.24705941901609595501905536901, 3.85088303636964375675997178618, 5.37275328661669194907215278623, 6.97371055422473493569992163867, 7.88711144460196356605409250981, 8.351257157353401744523838901572, 9.454419896289841119816933895926, 10.03255565958818673784718261940, 11.32363161411022171833837316965

Graph of the $Z$-function along the critical line