L(s) = 1 | + (0.707 + 0.707i)2-s + (1 + 1.41i)3-s + 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.292 + 1.70i)6-s + (−0.707 + 0.707i)8-s + (−1.00 + 2.82i)9-s + 1.00i·10-s + (−1.41 + 1.41i)11-s + (−1.41 + 1.00i)12-s + (−3 − 2i)13-s + (−0.292 + 1.70i)15-s − 1.00·16-s + 4.24·17-s + (−2.70 + 1.29i)18-s + (6 − 6i)19-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.577 + 0.816i)3-s + 0.500i·4-s + (0.316 + 0.316i)5-s + (−0.119 + 0.696i)6-s + (−0.250 + 0.250i)8-s + (−0.333 + 0.942i)9-s + 0.316i·10-s + (−0.426 + 0.426i)11-s + (−0.408 + 0.288i)12-s + (−0.832 − 0.554i)13-s + (−0.0756 + 0.440i)15-s − 0.250·16-s + 1.02·17-s + (−0.638 + 0.304i)18-s + (1.37 − 1.37i)19-s + ⋯ |
Λ(s)=(=(390s/2ΓC(s)L(s)(−0.315−0.948i)Λ(2−s)
Λ(s)=(=(390s/2ΓC(s+1/2)L(s)(−0.315−0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
390
= 2⋅3⋅5⋅13
|
Sign: |
−0.315−0.948i
|
Analytic conductor: |
3.11416 |
Root analytic conductor: |
1.76469 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ390(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 390, ( :1/2), −0.315−0.948i)
|
Particular Values
L(1) |
≈ |
1.22718+1.70213i |
L(21) |
≈ |
1.22718+1.70213i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 3 | 1+(−1−1.41i)T |
| 5 | 1+(−0.707−0.707i)T |
| 13 | 1+(3+2i)T |
good | 7 | 1+7iT2 |
| 11 | 1+(1.41−1.41i)T−11iT2 |
| 17 | 1−4.24T+17T2 |
| 19 | 1+(−6+6i)T−19iT2 |
| 23 | 1−1.41T+23T2 |
| 29 | 1−1.41iT−29T2 |
| 31 | 1+(3−3i)T−31iT2 |
| 37 | 1+(−5−5i)T+37iT2 |
| 41 | 1+(7.07+7.07i)T+41iT2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+(−4.24+4.24i)T−47iT2 |
| 53 | 1−11.3iT−53T2 |
| 59 | 1+(−2.82+2.82i)T−59iT2 |
| 61 | 1−2T+61T2 |
| 67 | 1+(−5+5i)T−67iT2 |
| 71 | 1+(5.65+5.65i)T+71iT2 |
| 73 | 1+(−6−6i)T+73iT2 |
| 79 | 1−8T+79T2 |
| 83 | 1+(5.65+5.65i)T+83iT2 |
| 89 | 1+(4.24−4.24i)T−89iT2 |
| 97 | 1+(−10+10i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.60157003759171037686269303124, −10.47166448253875639492295470800, −9.780081550135617731072317801203, −8.875247154207263964967485541464, −7.70516523525033162017941841644, −7.06258620780537083217495270098, −5.40099739122978266624222503302, −4.97863658782715270985198834109, −3.47676681822620453935412557895, −2.59503202606996395796708432105,
1.28938405490221187358980306374, 2.61819772181064849607171230985, 3.71625485650797373136142951594, 5.24985340103808300097915671590, 6.09605847366919804460148865623, 7.39520917610058093275361626968, 8.139806958442382058356299822849, 9.443284150768076408336505446444, 9.929238864907929281287238367994, 11.36629238556856990658273666865