L(s) = 1 | + (0.707 − 0.707i)2-s + (1 − 1.41i)3-s − 1.00i·4-s + (0.707 − 0.707i)5-s + (−0.292 − 1.70i)6-s + (−0.707 − 0.707i)8-s + (−1.00 − 2.82i)9-s − 1.00i·10-s + (−1.41 − 1.41i)11-s + (−1.41 − 1.00i)12-s + (−3 + 2i)13-s + (−0.292 − 1.70i)15-s − 1.00·16-s + 4.24·17-s + (−2.70 − 1.29i)18-s + (6 + 6i)19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.577 − 0.816i)3-s − 0.500i·4-s + (0.316 − 0.316i)5-s + (−0.119 − 0.696i)6-s + (−0.250 − 0.250i)8-s + (−0.333 − 0.942i)9-s − 0.316i·10-s + (−0.426 − 0.426i)11-s + (−0.408 − 0.288i)12-s + (−0.832 + 0.554i)13-s + (−0.0756 − 0.440i)15-s − 0.250·16-s + 1.02·17-s + (−0.638 − 0.304i)18-s + (1.37 + 1.37i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.315 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.315 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22718 - 1.70213i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22718 - 1.70213i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-1 + 1.41i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 13 | \( 1 + (3 - 2i)T \) |
good | 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 + (1.41 + 1.41i)T + 11iT^{2} \) |
| 17 | \( 1 - 4.24T + 17T^{2} \) |
| 19 | \( 1 + (-6 - 6i)T + 19iT^{2} \) |
| 23 | \( 1 - 1.41T + 23T^{2} \) |
| 29 | \( 1 + 1.41iT - 29T^{2} \) |
| 31 | \( 1 + (3 + 3i)T + 31iT^{2} \) |
| 37 | \( 1 + (-5 + 5i)T - 37iT^{2} \) |
| 41 | \( 1 + (7.07 - 7.07i)T - 41iT^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + (-4.24 - 4.24i)T + 47iT^{2} \) |
| 53 | \( 1 + 11.3iT - 53T^{2} \) |
| 59 | \( 1 + (-2.82 - 2.82i)T + 59iT^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + (-5 - 5i)T + 67iT^{2} \) |
| 71 | \( 1 + (5.65 - 5.65i)T - 71iT^{2} \) |
| 73 | \( 1 + (-6 + 6i)T - 73iT^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + (5.65 - 5.65i)T - 83iT^{2} \) |
| 89 | \( 1 + (4.24 + 4.24i)T + 89iT^{2} \) |
| 97 | \( 1 + (-10 - 10i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36629238556856990658273666865, −9.929238864907929281287238367994, −9.443284150768076408336505446444, −8.139806958442382058356299822849, −7.39520917610058093275361626968, −6.09605847366919804460148865623, −5.24985340103808300097915671590, −3.71625485650797373136142951594, −2.61819772181064849607171230985, −1.28938405490221187358980306374,
2.59503202606996395796708432105, 3.47676681822620453935412557895, 4.97863658782715270985198834109, 5.40099739122978266624222503302, 7.06258620780537083217495270098, 7.70516523525033162017941841644, 8.875247154207263964967485541464, 9.780081550135617731072317801203, 10.47166448253875639492295470800, 11.60157003759171037686269303124