L(s) = 1 | − i·2-s + 1.53i·3-s − 4-s + 1.53·6-s − 0.347i·7-s + i·8-s − 1.34·9-s − 1.53i·12-s − 1.87i·13-s − 0.347·14-s + 16-s + 1.87i·17-s + 1.34i·18-s − 19-s + 0.532·21-s + ⋯ |
L(s) = 1 | − i·2-s + 1.53i·3-s − 4-s + 1.53·6-s − 0.347i·7-s + i·8-s − 1.34·9-s − 1.53i·12-s − 1.87i·13-s − 0.347·14-s + 16-s + 1.87i·17-s + 1.34i·18-s − 19-s + 0.532·21-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.447−0.894i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(949,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), 0.447−0.894i)
|
Particular Values
L(21) |
≈ |
0.9495755422 |
L(21) |
≈ |
0.9495755422 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1−1.53iT−T2 |
| 7 | 1+0.347iT−T2 |
| 11 | 1−T2 |
| 13 | 1+1.87iT−T2 |
| 17 | 1−1.87iT−T2 |
| 23 | 1−1.53iT−T2 |
| 29 | 1−1.87T+T2 |
| 31 | 1−T2 |
| 37 | 1−iT−T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1−iT−T2 |
| 53 | 1−0.347iT−T2 |
| 59 | 1+1.53T+T2 |
| 61 | 1−T2 |
| 67 | 1+0.347iT−T2 |
| 71 | 1−T2 |
| 73 | 1−1.53iT−T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.954768252258581465507969654458, −8.317592686635888725968014212833, −7.80599719833522009170729227285, −6.21069422207521111440581695158, −5.54215302171513635130467628941, −4.75948594425292033401796425479, −4.08343082045360354246643870477, −3.43340084325485757930990958980, −2.76541946939768003642827771560, −1.29774912106516932850348464564,
0.59391308421665691461222734084, 1.95578864965617538534759869238, 2.78718196518846251748011518083, 4.30327564757625793169181641224, 4.83688218040819580912583476817, 5.96098234393175694228500674720, 6.64698682686890215100202189473, 6.88176350504426104081348863350, 7.58613008060066245343639524592, 8.521596461789546927598301523378