L(s) = 1 | + i·2-s − 1.53i·3-s − 4-s + 1.53·6-s + 0.347i·7-s − i·8-s − 1.34·9-s + 1.53i·12-s + 1.87i·13-s − 0.347·14-s + 16-s − 1.87i·17-s − 1.34i·18-s − 19-s + 0.532·21-s + ⋯ |
L(s) = 1 | + i·2-s − 1.53i·3-s − 4-s + 1.53·6-s + 0.347i·7-s − i·8-s − 1.34·9-s + 1.53i·12-s + 1.87i·13-s − 0.347·14-s + 16-s − 1.87i·17-s − 1.34i·18-s − 19-s + 0.532·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9495755422\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9495755422\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 + 1.53iT - T^{2} \) |
| 7 | \( 1 - 0.347iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - 1.87iT - T^{2} \) |
| 17 | \( 1 + 1.87iT - T^{2} \) |
| 23 | \( 1 + 1.53iT - T^{2} \) |
| 29 | \( 1 - 1.87T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + iT - T^{2} \) |
| 53 | \( 1 + 0.347iT - T^{2} \) |
| 59 | \( 1 + 1.53T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 0.347iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 1.53iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.521596461789546927598301523378, −7.58613008060066245343639524592, −6.88176350504426104081348863350, −6.64698682686890215100202189473, −5.96098234393175694228500674720, −4.83688218040819580912583476817, −4.30327564757625793169181641224, −2.78718196518846251748011518083, −1.95578864965617538534759869238, −0.59391308421665691461222734084,
1.29774912106516932850348464564, 2.76541946939768003642827771560, 3.43340084325485757930990958980, 4.08343082045360354246643870477, 4.75948594425292033401796425479, 5.54215302171513635130467628941, 6.21069422207521111440581695158, 7.80599719833522009170729227285, 8.317592686635888725968014212833, 8.954768252258581465507969654458