L(s) = 1 | − 2.49i·3-s − 2.49i·7-s − 3.20·9-s − 3.49·11-s − 0.713i·13-s − 3.91i·17-s + 19-s − 6.20·21-s − 2.20i·23-s + 0.509i·27-s − 0.636·29-s − 2.14·31-s + 8.69i·33-s − 2.06i·37-s − 1.77·39-s + ⋯ |
L(s) = 1 | − 1.43i·3-s − 0.941i·7-s − 1.06·9-s − 1.05·11-s − 0.197i·13-s − 0.950i·17-s + 0.229·19-s − 1.35·21-s − 0.459i·23-s + 0.0979i·27-s − 0.118·29-s − 0.384·31-s + 1.51i·33-s − 0.339i·37-s − 0.284·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
0.7776367197 |
L(21) |
≈ |
0.7776367197 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1+2.49iT−3T2 |
| 7 | 1+2.49iT−7T2 |
| 11 | 1+3.49T+11T2 |
| 13 | 1+0.713iT−13T2 |
| 17 | 1+3.91iT−17T2 |
| 23 | 1+2.20iT−23T2 |
| 29 | 1+0.636T+29T2 |
| 31 | 1+2.14T+31T2 |
| 37 | 1+2.06iT−37T2 |
| 41 | 1+4.35T+41T2 |
| 43 | 1+4.55iT−43T2 |
| 47 | 1+0.268iT−47T2 |
| 53 | 1−7.98iT−53T2 |
| 59 | 1−2.57T+59T2 |
| 61 | 1+10.8T+61T2 |
| 67 | 1−1.08iT−67T2 |
| 71 | 1−6.83T+71T2 |
| 73 | 1−15.0iT−73T2 |
| 79 | 1−7.63T+79T2 |
| 83 | 1−0.923iT−83T2 |
| 89 | 1+14.1T+89T2 |
| 97 | 1+6.14iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.82257974461504780548865685208, −7.21125607724595925161636679169, −6.86530907499389929677450502919, −5.85159655395787988159237126191, −5.13800651578231756219686026568, −4.14169948379037910479312859877, −3.00900683175834972874577745819, −2.25296497467054431748179219903, −1.14088560416699761886137482040, −0.23519039623746656479886125353,
1.83616106002060038410262931476, 2.90061353124348997683568267497, 3.60662581388110246341105251411, 4.50899746438590120917984078089, 5.24321224224846928409430435005, 5.70059397161161435704024811313, 6.63980853911640696104331333460, 7.79288666685536375576513616230, 8.374676896734722441570468794020, 9.161579232077970635865191661558