Properties

Label 2-3800-5.4-c1-0-5
Degree $2$
Conductor $3800$
Sign $-0.447 + 0.894i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.49i·3-s + 2.49i·7-s − 3.20·9-s − 3.49·11-s + 0.713i·13-s + 3.91i·17-s + 19-s − 6.20·21-s + 2.20i·23-s − 0.509i·27-s − 0.636·29-s − 2.14·31-s − 8.69i·33-s + 2.06i·37-s − 1.77·39-s + ⋯
L(s)  = 1  + 1.43i·3-s + 0.941i·7-s − 1.06·9-s − 1.05·11-s + 0.197i·13-s + 0.950i·17-s + 0.229·19-s − 1.35·21-s + 0.459i·23-s − 0.0979i·27-s − 0.118·29-s − 0.384·31-s − 1.51i·33-s + 0.339i·37-s − 0.284·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7776367197\)
\(L(\frac12)\) \(\approx\) \(0.7776367197\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 2.49iT - 3T^{2} \)
7 \( 1 - 2.49iT - 7T^{2} \)
11 \( 1 + 3.49T + 11T^{2} \)
13 \( 1 - 0.713iT - 13T^{2} \)
17 \( 1 - 3.91iT - 17T^{2} \)
23 \( 1 - 2.20iT - 23T^{2} \)
29 \( 1 + 0.636T + 29T^{2} \)
31 \( 1 + 2.14T + 31T^{2} \)
37 \( 1 - 2.06iT - 37T^{2} \)
41 \( 1 + 4.35T + 41T^{2} \)
43 \( 1 - 4.55iT - 43T^{2} \)
47 \( 1 - 0.268iT - 47T^{2} \)
53 \( 1 + 7.98iT - 53T^{2} \)
59 \( 1 - 2.57T + 59T^{2} \)
61 \( 1 + 10.8T + 61T^{2} \)
67 \( 1 + 1.08iT - 67T^{2} \)
71 \( 1 - 6.83T + 71T^{2} \)
73 \( 1 + 15.0iT - 73T^{2} \)
79 \( 1 - 7.63T + 79T^{2} \)
83 \( 1 + 0.923iT - 83T^{2} \)
89 \( 1 + 14.1T + 89T^{2} \)
97 \( 1 - 6.14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.161579232077970635865191661558, −8.374676896734722441570468794020, −7.79288666685536375576513616230, −6.63980853911640696104331333460, −5.70059397161161435704024811313, −5.24321224224846928409430435005, −4.50899746438590120917984078089, −3.60662581388110246341105251411, −2.90061353124348997683568267497, −1.83616106002060038410262931476, 0.23519039623746656479886125353, 1.14088560416699761886137482040, 2.25296497467054431748179219903, 3.00900683175834972874577745819, 4.14169948379037910479312859877, 5.13800651578231756219686026568, 5.85159655395787988159237126191, 6.86530907499389929677450502919, 7.21125607724595925161636679169, 7.82257974461504780548865685208

Graph of the $Z$-function along the critical line