L(s) = 1 | − 2.32i·3-s − 1.39i·7-s − 2.39·9-s − 4.32i·13-s + 0.601i·17-s − 19-s − 3.24·21-s − 6.04i·23-s − 1.39i·27-s − 4.60·29-s + 2.79·31-s + 1.07i·37-s − 10.0·39-s − 5.44·41-s + 8.64i·43-s + ⋯ |
L(s) = 1 | − 1.34i·3-s − 0.528i·7-s − 0.799·9-s − 1.19i·13-s + 0.145i·17-s − 0.229·19-s − 0.708·21-s − 1.26i·23-s − 0.269i·27-s − 0.854·29-s + 0.502·31-s + 0.176i·37-s − 1.60·39-s − 0.850·41-s + 1.31i·43-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.894−0.447i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.160978111 |
L(21) |
≈ |
1.160978111 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1+2.32iT−3T2 |
| 7 | 1+1.39iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1+4.32iT−13T2 |
| 17 | 1−0.601iT−17T2 |
| 23 | 1+6.04iT−23T2 |
| 29 | 1+4.60T+29T2 |
| 31 | 1−2.79T+31T2 |
| 37 | 1−1.07iT−37T2 |
| 41 | 1+5.44T+41T2 |
| 43 | 1−8.64iT−43T2 |
| 47 | 1+1.85iT−47T2 |
| 53 | 1−3.11iT−53T2 |
| 59 | 1−6.69T+59T2 |
| 61 | 1+2.64T+61T2 |
| 67 | 1+14.4iT−67T2 |
| 71 | 1+5.59T+71T2 |
| 73 | 1+12.6iT−73T2 |
| 79 | 1−4.64T+79T2 |
| 83 | 1−1.20iT−83T2 |
| 89 | 1+9.44T+89T2 |
| 97 | 1−4.51iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.963064896663921291227471183231, −7.40843104755245891182732277941, −6.61540710152001833228520760373, −6.12045306858802990808457147828, −5.17386682172516514936360606494, −4.23071940256840709222236083897, −3.16697465462797393106678710151, −2.30617675650838253723635086167, −1.27309282765583189636570105611, −0.34400869778399379051097310846,
1.64587361621402961688956936471, 2.71488540180933286473424904123, 3.79803893725793442786446647294, 4.18499771242696888959210147481, 5.21700491204007778372766033472, 5.62427070833614467710536656700, 6.72572131064042491774303449444, 7.39728571894688107367864330328, 8.541826102884353559587103949550, 8.979844754746252746078036013071