Properties

Label 2-3800-5.4-c1-0-76
Degree $2$
Conductor $3800$
Sign $-0.894 - 0.447i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.32i·3-s − 1.39i·7-s − 2.39·9-s − 4.32i·13-s + 0.601i·17-s − 19-s − 3.24·21-s − 6.04i·23-s − 1.39i·27-s − 4.60·29-s + 2.79·31-s + 1.07i·37-s − 10.0·39-s − 5.44·41-s + 8.64i·43-s + ⋯
L(s)  = 1  − 1.34i·3-s − 0.528i·7-s − 0.799·9-s − 1.19i·13-s + 0.145i·17-s − 0.229·19-s − 0.708·21-s − 1.26i·23-s − 0.269i·27-s − 0.854·29-s + 0.502·31-s + 0.176i·37-s − 1.60·39-s − 0.850·41-s + 1.31i·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.160978111\)
\(L(\frac12)\) \(\approx\) \(1.160978111\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 2.32iT - 3T^{2} \)
7 \( 1 + 1.39iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 4.32iT - 13T^{2} \)
17 \( 1 - 0.601iT - 17T^{2} \)
23 \( 1 + 6.04iT - 23T^{2} \)
29 \( 1 + 4.60T + 29T^{2} \)
31 \( 1 - 2.79T + 31T^{2} \)
37 \( 1 - 1.07iT - 37T^{2} \)
41 \( 1 + 5.44T + 41T^{2} \)
43 \( 1 - 8.64iT - 43T^{2} \)
47 \( 1 + 1.85iT - 47T^{2} \)
53 \( 1 - 3.11iT - 53T^{2} \)
59 \( 1 - 6.69T + 59T^{2} \)
61 \( 1 + 2.64T + 61T^{2} \)
67 \( 1 + 14.4iT - 67T^{2} \)
71 \( 1 + 5.59T + 71T^{2} \)
73 \( 1 + 12.6iT - 73T^{2} \)
79 \( 1 - 4.64T + 79T^{2} \)
83 \( 1 - 1.20iT - 83T^{2} \)
89 \( 1 + 9.44T + 89T^{2} \)
97 \( 1 - 4.51iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.963064896663921291227471183231, −7.40843104755245891182732277941, −6.61540710152001833228520760373, −6.12045306858802990808457147828, −5.17386682172516514936360606494, −4.23071940256840709222236083897, −3.16697465462797393106678710151, −2.30617675650838253723635086167, −1.27309282765583189636570105611, −0.34400869778399379051097310846, 1.64587361621402961688956936471, 2.71488540180933286473424904123, 3.79803893725793442786446647294, 4.18499771242696888959210147481, 5.21700491204007778372766033472, 5.62427070833614467710536656700, 6.72572131064042491774303449444, 7.39728571894688107367864330328, 8.541826102884353559587103949550, 8.979844754746252746078036013071

Graph of the $Z$-function along the critical line