Properties

Label 3800.2.d.l
Level 38003800
Weight 22
Character orbit 3800.d
Analytic conductor 30.34330.343
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3800,2,Mod(3649,3800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3800.3649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 3800=235219 3800 = 2^{3} \cdot 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3800.d (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.343152768130.3431527681
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.3356224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6+8x4+16x2+1 x^{6} + 8x^{4} + 16x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ4q3+β5q7+(β11)q9+(β4+β2)q13+(β5β2)q17q19+(β3β1+1)q21+(β52β4)q23++(3β5+β4+β2)q97+O(q100) q - \beta_{4} q^{3} + \beta_{5} q^{7} + (\beta_1 - 1) q^{9} + ( - \beta_{4} + \beta_{2}) q^{13} + (\beta_{5} - \beta_{2}) q^{17} - q^{19} + (\beta_{3} - \beta_1 + 1) q^{21} + (\beta_{5} - 2 \beta_{4}) q^{23}+ \cdots + ( - 3 \beta_{5} + \beta_{4} + \beta_{2}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q8q96q19+6q2134q29+4q3122q39+12q418q49+2q5130q59+16q6146q698q714q7918q8112q89+2q91+O(q100) 6 q - 8 q^{9} - 6 q^{19} + 6 q^{21} - 34 q^{29} + 4 q^{31} - 22 q^{39} + 12 q^{41} - 8 q^{49} + 2 q^{51} - 30 q^{59} + 16 q^{61} - 46 q^{69} - 8 q^{71} - 4 q^{79} - 18 q^{81} - 12 q^{89} + 2 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6+8x4+16x2+1 x^{6} + 8x^{4} + 16x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν4+3ν23 \nu^{4} + 3\nu^{2} - 3 Copy content Toggle raw display
β2\beta_{2}== 2ν3+8ν 2\nu^{3} + 8\nu Copy content Toggle raw display
β3\beta_{3}== 2ν4+10ν2+5 2\nu^{4} + 10\nu^{2} + 5 Copy content Toggle raw display
β4\beta_{4}== ν5+7ν3+11ν \nu^{5} + 7\nu^{3} + 11\nu Copy content Toggle raw display
β5\beta_{5}== ν5+7ν3+13ν \nu^{5} + 7\nu^{3} + 13\nu Copy content Toggle raw display
ν\nu== (β5β4)/2 ( \beta_{5} - \beta_{4} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β32β111)/4 ( \beta_{3} - 2\beta _1 - 11 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (4β5+4β4+β2)/2 ( -4\beta_{5} + 4\beta_{4} + \beta_{2} ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (3β3+10β1+45)/4 ( -3\beta_{3} + 10\beta _1 + 45 ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (17β515β47β2)/2 ( 17\beta_{5} - 15\beta_{4} - 7\beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3800Z)×\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times.

nn 401401 951951 19011901 19771977
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3649.1
0.254102i
1.86081i
2.11491i
2.11491i
1.86081i
0.254102i
0 2.68133i 0 0 0 3.18953i 0 −4.18953 0
3649.2 0 2.32340i 0 0 0 1.39821i 0 −2.39821 0
3649.3 0 0.642074i 0 0 0 3.58774i 0 2.58774 0
3649.4 0 0.642074i 0 0 0 3.58774i 0 2.58774 0
3649.5 0 2.32340i 0 0 0 1.39821i 0 −2.39821 0
3649.6 0 2.68133i 0 0 0 3.18953i 0 −4.18953 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3649.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3800.2.d.l 6
5.b even 2 1 inner 3800.2.d.l 6
5.c odd 4 1 760.2.a.j 3
5.c odd 4 1 3800.2.a.x 3
15.e even 4 1 6840.2.a.bg 3
20.e even 4 1 1520.2.a.s 3
20.e even 4 1 7600.2.a.bq 3
40.i odd 4 1 6080.2.a.bv 3
40.k even 4 1 6080.2.a.bq 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.2.a.j 3 5.c odd 4 1
1520.2.a.s 3 20.e even 4 1
3800.2.a.x 3 5.c odd 4 1
3800.2.d.l 6 1.a even 1 1 trivial
3800.2.d.l 6 5.b even 2 1 inner
6080.2.a.bq 3 40.k even 4 1
6080.2.a.bv 3 40.i odd 4 1
6840.2.a.bg 3 15.e even 4 1
7600.2.a.bq 3 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3800,[χ])S_{2}^{\mathrm{new}}(3800, [\chi]):

T36+13T34+44T32+16 T_{3}^{6} + 13T_{3}^{4} + 44T_{3}^{2} + 16 Copy content Toggle raw display
T76+25T74+176T72+256 T_{7}^{6} + 25T_{7}^{4} + 176T_{7}^{2} + 256 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6+13T4++16 T^{6} + 13 T^{4} + \cdots + 16 Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T6+25T4++256 T^{6} + 25 T^{4} + \cdots + 256 Copy content Toggle raw display
1111 T6 T^{6} Copy content Toggle raw display
1313 T6+21T4++16 T^{6} + 21 T^{4} + \cdots + 16 Copy content Toggle raw display
1717 T6+33T4++16 T^{6} + 33 T^{4} + \cdots + 16 Copy content Toggle raw display
1919 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
2323 T6+65T4++4096 T^{6} + 65 T^{4} + \cdots + 4096 Copy content Toggle raw display
2929 (T3+17T2++124)2 (T^{3} + 17 T^{2} + \cdots + 124)^{2} Copy content Toggle raw display
3131 (T32T2++128)2 (T^{3} - 2 T^{2} + \cdots + 128)^{2} Copy content Toggle raw display
3737 T6+64T4++64 T^{6} + 64 T^{4} + \cdots + 64 Copy content Toggle raw display
4141 (T36T252T+56)2 (T^{3} - 6 T^{2} - 52 T + 56)^{2} Copy content Toggle raw display
4343 T6+84T4++1024 T^{6} + 84 T^{4} + \cdots + 1024 Copy content Toggle raw display
4747 T6+176T4++16384 T^{6} + 176 T^{4} + \cdots + 16384 Copy content Toggle raw display
5353 T6+109T4++2704 T^{6} + 109 T^{4} + \cdots + 2704 Copy content Toggle raw display
5959 (T3+15T2+784)2 (T^{3} + 15 T^{2} + \cdots - 784)^{2} Copy content Toggle raw display
6161 (T38T24T+64)2 (T^{3} - 8 T^{2} - 4 T + 64)^{2} Copy content Toggle raw display
6767 T6+365T4++1106704 T^{6} + 365 T^{4} + \cdots + 1106704 Copy content Toggle raw display
7171 (T3+4T2+1024)2 (T^{3} + 4 T^{2} + \cdots - 1024)^{2} Copy content Toggle raw display
7373 T6+209T4++85264 T^{6} + 209 T^{4} + \cdots + 85264 Copy content Toggle raw display
7979 (T3+2T224T32)2 (T^{3} + 2 T^{2} - 24 T - 32)^{2} Copy content Toggle raw display
8383 T6+132T4++1024 T^{6} + 132 T^{4} + \cdots + 1024 Copy content Toggle raw display
8989 (T3+6T2+184)2 (T^{3} + 6 T^{2} + \cdots - 184)^{2} Copy content Toggle raw display
9797 T6+224T4++87616 T^{6} + 224 T^{4} + \cdots + 87616 Copy content Toggle raw display
show more
show less