gp: [N,k,chi] = [3800,2,Mod(3649,3800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3800.3649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,0,0,0,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 + 8 x 4 + 16 x 2 + 1 x^{6} + 8x^{4} + 16x^{2} + 1 x 6 + 8 x 4 + 1 6 x 2 + 1
x^6 + 8*x^4 + 16*x^2 + 1
:
β 1 \beta_{1} β 1 = = =
ν 4 + 3 ν 2 − 3 \nu^{4} + 3\nu^{2} - 3 ν 4 + 3 ν 2 − 3
v^4 + 3*v^2 - 3
β 2 \beta_{2} β 2 = = =
2 ν 3 + 8 ν 2\nu^{3} + 8\nu 2 ν 3 + 8 ν
2*v^3 + 8*v
β 3 \beta_{3} β 3 = = =
2 ν 4 + 10 ν 2 + 5 2\nu^{4} + 10\nu^{2} + 5 2 ν 4 + 1 0 ν 2 + 5
2*v^4 + 10*v^2 + 5
β 4 \beta_{4} β 4 = = =
ν 5 + 7 ν 3 + 11 ν \nu^{5} + 7\nu^{3} + 11\nu ν 5 + 7 ν 3 + 1 1 ν
v^5 + 7*v^3 + 11*v
β 5 \beta_{5} β 5 = = =
ν 5 + 7 ν 3 + 13 ν \nu^{5} + 7\nu^{3} + 13\nu ν 5 + 7 ν 3 + 1 3 ν
v^5 + 7*v^3 + 13*v
ν \nu ν = = =
( β 5 − β 4 ) / 2 ( \beta_{5} - \beta_{4} ) / 2 ( β 5 − β 4 ) / 2
(b5 - b4) / 2
ν 2 \nu^{2} ν 2 = = =
( β 3 − 2 β 1 − 11 ) / 4 ( \beta_{3} - 2\beta _1 - 11 ) / 4 ( β 3 − 2 β 1 − 1 1 ) / 4
(b3 - 2*b1 - 11) / 4
ν 3 \nu^{3} ν 3 = = =
( − 4 β 5 + 4 β 4 + β 2 ) / 2 ( -4\beta_{5} + 4\beta_{4} + \beta_{2} ) / 2 ( − 4 β 5 + 4 β 4 + β 2 ) / 2
(-4*b5 + 4*b4 + b2) / 2
ν 4 \nu^{4} ν 4 = = =
( − 3 β 3 + 10 β 1 + 45 ) / 4 ( -3\beta_{3} + 10\beta _1 + 45 ) / 4 ( − 3 β 3 + 1 0 β 1 + 4 5 ) / 4
(-3*b3 + 10*b1 + 45) / 4
ν 5 \nu^{5} ν 5 = = =
( 17 β 5 − 15 β 4 − 7 β 2 ) / 2 ( 17\beta_{5} - 15\beta_{4} - 7\beta_{2} ) / 2 ( 1 7 β 5 − 1 5 β 4 − 7 β 2 ) / 2
(17*b5 - 15*b4 - 7*b2) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 3800 Z ) × \left(\mathbb{Z}/3800\mathbb{Z}\right)^\times ( Z / 3 8 0 0 Z ) × .
n n n
401 401 4 0 1
951 951 9 5 1
1901 1901 1 9 0 1
1977 1977 1 9 7 7
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 3800 , [ χ ] ) S_{2}^{\mathrm{new}}(3800, [\chi]) S 2 n e w ( 3 8 0 0 , [ χ ] ) :
T 3 6 + 13 T 3 4 + 44 T 3 2 + 16 T_{3}^{6} + 13T_{3}^{4} + 44T_{3}^{2} + 16 T 3 6 + 1 3 T 3 4 + 4 4 T 3 2 + 1 6
T3^6 + 13*T3^4 + 44*T3^2 + 16
T 7 6 + 25 T 7 4 + 176 T 7 2 + 256 T_{7}^{6} + 25T_{7}^{4} + 176T_{7}^{2} + 256 T 7 6 + 2 5 T 7 4 + 1 7 6 T 7 2 + 2 5 6
T7^6 + 25*T7^4 + 176*T7^2 + 256
T 11 T_{11} T 1 1
T11
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
T 6 + 13 T 4 + ⋯ + 16 T^{6} + 13 T^{4} + \cdots + 16 T 6 + 1 3 T 4 + ⋯ + 1 6
T^6 + 13*T^4 + 44*T^2 + 16
5 5 5
T 6 T^{6} T 6
T^6
7 7 7
T 6 + 25 T 4 + ⋯ + 256 T^{6} + 25 T^{4} + \cdots + 256 T 6 + 2 5 T 4 + ⋯ + 2 5 6
T^6 + 25*T^4 + 176*T^2 + 256
11 11 1 1
T 6 T^{6} T 6
T^6
13 13 1 3
T 6 + 21 T 4 + ⋯ + 16 T^{6} + 21 T^{4} + \cdots + 16 T 6 + 2 1 T 4 + ⋯ + 1 6
T^6 + 21*T^4 + 44*T^2 + 16
17 17 1 7
T 6 + 33 T 4 + ⋯ + 16 T^{6} + 33 T^{4} + \cdots + 16 T 6 + 3 3 T 4 + ⋯ + 1 6
T^6 + 33*T^4 + 56*T^2 + 16
19 19 1 9
( T + 1 ) 6 (T + 1)^{6} ( T + 1 ) 6
(T + 1)^6
23 23 2 3
T 6 + 65 T 4 + ⋯ + 4096 T^{6} + 65 T^{4} + \cdots + 4096 T 6 + 6 5 T 4 + ⋯ + 4 0 9 6
T^6 + 65*T^4 + 1152*T^2 + 4096
29 29 2 9
( T 3 + 17 T 2 + ⋯ + 124 ) 2 (T^{3} + 17 T^{2} + \cdots + 124)^{2} ( T 3 + 1 7 T 2 + ⋯ + 1 2 4 ) 2
(T^3 + 17*T^2 + 84*T + 124)^2
31 31 3 1
( T 3 − 2 T 2 + ⋯ + 128 ) 2 (T^{3} - 2 T^{2} + \cdots + 128)^{2} ( T 3 − 2 T 2 + ⋯ + 1 2 8 ) 2
(T^3 - 2*T^2 - 48*T + 128)^2
37 37 3 7
T 6 + 64 T 4 + ⋯ + 64 T^{6} + 64 T^{4} + \cdots + 64 T 6 + 6 4 T 4 + ⋯ + 6 4
T^6 + 64*T^4 + 128*T^2 + 64
41 41 4 1
( T 3 − 6 T 2 − 52 T + 56 ) 2 (T^{3} - 6 T^{2} - 52 T + 56)^{2} ( T 3 − 6 T 2 − 5 2 T + 5 6 ) 2
(T^3 - 6*T^2 - 52*T + 56)^2
43 43 4 3
T 6 + 84 T 4 + ⋯ + 1024 T^{6} + 84 T^{4} + \cdots + 1024 T 6 + 8 4 T 4 + ⋯ + 1 0 2 4
T^6 + 84*T^4 + 704*T^2 + 1024
47 47 4 7
T 6 + 176 T 4 + ⋯ + 16384 T^{6} + 176 T^{4} + \cdots + 16384 T 6 + 1 7 6 T 4 + ⋯ + 1 6 3 8 4
T^6 + 176*T^4 + 5376*T^2 + 16384
53 53 5 3
T 6 + 109 T 4 + ⋯ + 2704 T^{6} + 109 T^{4} + \cdots + 2704 T 6 + 1 0 9 T 4 + ⋯ + 2 7 0 4
T^6 + 109*T^4 + 1244*T^2 + 2704
59 59 5 9
( T 3 + 15 T 2 + ⋯ − 784 ) 2 (T^{3} + 15 T^{2} + \cdots - 784)^{2} ( T 3 + 1 5 T 2 + ⋯ − 7 8 4 ) 2
(T^3 + 15*T^2 - 28*T - 784)^2
61 61 6 1
( T 3 − 8 T 2 − 4 T + 64 ) 2 (T^{3} - 8 T^{2} - 4 T + 64)^{2} ( T 3 − 8 T 2 − 4 T + 6 4 ) 2
(T^3 - 8*T^2 - 4*T + 64)^2
67 67 6 7
T 6 + 365 T 4 + ⋯ + 1106704 T^{6} + 365 T^{4} + \cdots + 1106704 T 6 + 3 6 5 T 4 + ⋯ + 1 1 0 6 7 0 4
T^6 + 365*T^4 + 37996*T^2 + 1106704
71 71 7 1
( T 3 + 4 T 2 + ⋯ − 1024 ) 2 (T^{3} + 4 T^{2} + \cdots - 1024)^{2} ( T 3 + 4 T 2 + ⋯ − 1 0 2 4 ) 2
(T^3 + 4*T^2 - 192*T - 1024)^2
73 73 7 3
T 6 + 209 T 4 + ⋯ + 85264 T^{6} + 209 T^{4} + \cdots + 85264 T 6 + 2 0 9 T 4 + ⋯ + 8 5 2 6 4
T^6 + 209*T^4 + 8248*T^2 + 85264
79 79 7 9
( T 3 + 2 T 2 − 24 T − 32 ) 2 (T^{3} + 2 T^{2} - 24 T - 32)^{2} ( T 3 + 2 T 2 − 2 4 T − 3 2 ) 2
(T^3 + 2*T^2 - 24*T - 32)^2
83 83 8 3
T 6 + 132 T 4 + ⋯ + 1024 T^{6} + 132 T^{4} + \cdots + 1024 T 6 + 1 3 2 T 4 + ⋯ + 1 0 2 4
T^6 + 132*T^4 + 896*T^2 + 1024
89 89 8 9
( T 3 + 6 T 2 + ⋯ − 184 ) 2 (T^{3} + 6 T^{2} + \cdots - 184)^{2} ( T 3 + 6 T 2 + ⋯ − 1 8 4 ) 2
(T^3 + 6*T^2 - 52*T - 184)^2
97 97 9 7
T 6 + 224 T 4 + ⋯ + 87616 T^{6} + 224 T^{4} + \cdots + 87616 T 6 + 2 2 4 T 4 + ⋯ + 8 7 6 1 6
T^6 + 224*T^4 + 8448*T^2 + 87616
show more
show less