Properties

Label 2-3800-5.4-c1-0-66
Degree $2$
Conductor $3800$
Sign $-0.894 + 0.447i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.470i·3-s − 2.71i·7-s + 2.77·9-s − 5.55·11-s + 2.02i·13-s + 3.77i·17-s − 19-s − 1.28·21-s − 5.77i·23-s − 2.71i·27-s + 5.66·29-s + 7.55·31-s + 2.61i·33-s + 3.75i·37-s + 0.954·39-s + ⋯
L(s)  = 1  − 0.271i·3-s − 1.02i·7-s + 0.926·9-s − 1.67·11-s + 0.562i·13-s + 0.916i·17-s − 0.229·19-s − 0.279·21-s − 1.20i·23-s − 0.523i·27-s + 1.05·29-s + 1.35·31-s + 0.455i·33-s + 0.616i·37-s + 0.152·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8948177051\)
\(L(\frac12)\) \(\approx\) \(0.8948177051\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 0.470iT - 3T^{2} \)
7 \( 1 + 2.71iT - 7T^{2} \)
11 \( 1 + 5.55T + 11T^{2} \)
13 \( 1 - 2.02iT - 13T^{2} \)
17 \( 1 - 3.77iT - 17T^{2} \)
23 \( 1 + 5.77iT - 23T^{2} \)
29 \( 1 - 5.66T + 29T^{2} \)
31 \( 1 - 7.55T + 31T^{2} \)
37 \( 1 - 3.75iT - 37T^{2} \)
41 \( 1 + 12.6T + 41T^{2} \)
43 \( 1 + 9.43iT - 43T^{2} \)
47 \( 1 + 11.1iT - 47T^{2} \)
53 \( 1 + 8.85iT - 53T^{2} \)
59 \( 1 + 11.4T + 59T^{2} \)
61 \( 1 + 10.6T + 61T^{2} \)
67 \( 1 - 11.5iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 9.45iT - 73T^{2} \)
79 \( 1 + 8.94T + 79T^{2} \)
83 \( 1 + 4.94iT - 83T^{2} \)
89 \( 1 + 15.4T + 89T^{2} \)
97 \( 1 + 10.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.281536264587853182533690338085, −7.34420713014736610772179935454, −6.84043099622044586997038794199, −6.14672898070967587722297320638, −4.92075589908933804379742365196, −4.49502115445240503263295553096, −3.55674168602339080079632327461, −2.47954697627113768009821596601, −1.51051979957863450251381268019, −0.25823291424071232560391514923, 1.38505100929604384259484377236, 2.69703934389160025444259154045, 3.04870458607400675070429381942, 4.49659202727815626737415738950, 5.00860081746807648424293948768, 5.71409813749702915123146125377, 6.53808952417902425738244094436, 7.60470985382915291578906609626, 7.920158719713411235101499469094, 8.836597046037778600421564544218

Graph of the $Z$-function along the critical line