L(s) = 1 | − 0.470i·3-s − 2.71i·7-s + 2.77·9-s − 5.55·11-s + 2.02i·13-s + 3.77i·17-s − 19-s − 1.28·21-s − 5.77i·23-s − 2.71i·27-s + 5.66·29-s + 7.55·31-s + 2.61i·33-s + 3.75i·37-s + 0.954·39-s + ⋯ |
L(s) = 1 | − 0.271i·3-s − 1.02i·7-s + 0.926·9-s − 1.67·11-s + 0.562i·13-s + 0.916i·17-s − 0.229·19-s − 0.279·21-s − 1.20i·23-s − 0.523i·27-s + 1.05·29-s + 1.35·31-s + 0.455i·33-s + 0.616i·37-s + 0.152·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
0.8948177051 |
L(21) |
≈ |
0.8948177051 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1+0.470iT−3T2 |
| 7 | 1+2.71iT−7T2 |
| 11 | 1+5.55T+11T2 |
| 13 | 1−2.02iT−13T2 |
| 17 | 1−3.77iT−17T2 |
| 23 | 1+5.77iT−23T2 |
| 29 | 1−5.66T+29T2 |
| 31 | 1−7.55T+31T2 |
| 37 | 1−3.75iT−37T2 |
| 41 | 1+12.6T+41T2 |
| 43 | 1+9.43iT−43T2 |
| 47 | 1+11.1iT−47T2 |
| 53 | 1+8.85iT−53T2 |
| 59 | 1+11.4T+59T2 |
| 61 | 1+10.6T+61T2 |
| 67 | 1−11.5iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+9.45iT−73T2 |
| 79 | 1+8.94T+79T2 |
| 83 | 1+4.94iT−83T2 |
| 89 | 1+15.4T+89T2 |
| 97 | 1+10.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.281536264587853182533690338085, −7.34420713014736610772179935454, −6.84043099622044586997038794199, −6.14672898070967587722297320638, −4.92075589908933804379742365196, −4.49502115445240503263295553096, −3.55674168602339080079632327461, −2.47954697627113768009821596601, −1.51051979957863450251381268019, −0.25823291424071232560391514923,
1.38505100929604384259484377236, 2.69703934389160025444259154045, 3.04870458607400675070429381942, 4.49659202727815626737415738950, 5.00860081746807648424293948768, 5.71409813749702915123146125377, 6.53808952417902425738244094436, 7.60470985382915291578906609626, 7.920158719713411235101499469094, 8.836597046037778600421564544218