L(s) = 1 | + 3.08i·3-s + 4.29i·7-s − 6.51·9-s − 1.21·11-s − 5.08i·13-s − 2.29i·17-s + 19-s − 13.2·21-s − 7.67i·23-s − 10.8i·27-s + 0.489·29-s − 3.74i·33-s − 2i·37-s + 15.6·39-s − 4.16·41-s + ⋯ |
L(s) = 1 | + 1.78i·3-s + 1.62i·7-s − 2.17·9-s − 0.365·11-s − 1.41i·13-s − 0.557i·17-s + 0.229·19-s − 2.89·21-s − 1.60i·23-s − 2.08i·27-s + 0.0909·29-s − 0.651i·33-s − 0.328i·37-s + 2.51·39-s − 0.650·41-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.894+0.447i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), 0.894+0.447i)
|
Particular Values
L(1) |
≈ |
0.6123491332 |
L(21) |
≈ |
0.6123491332 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1−3.08iT−3T2 |
| 7 | 1−4.29iT−7T2 |
| 11 | 1+1.21T+11T2 |
| 13 | 1+5.08iT−13T2 |
| 17 | 1+2.29iT−17T2 |
| 23 | 1+7.67iT−23T2 |
| 29 | 1−0.489T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+4.16T+41T2 |
| 43 | 1+12.9iT−43T2 |
| 47 | 1+5.80iT−47T2 |
| 53 | 1+1.93iT−53T2 |
| 59 | 1−11.0T+59T2 |
| 61 | 1+5.38T+61T2 |
| 67 | 1−2.48iT−67T2 |
| 71 | 1+11.7T+71T2 |
| 73 | 1−8.46iT−73T2 |
| 79 | 1+1.83T+79T2 |
| 83 | 1−7.02iT−83T2 |
| 89 | 1+13.7T+89T2 |
| 97 | 1+3.57iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.590870865685355767489217060915, −8.179836837340462387887825771707, −6.86659583918618434549370964103, −5.61204123343592595059291395406, −5.52510651675324663879447766850, −4.79207056184273708729411307530, −3.81834009142702967632493230365, −2.89920171658089562192851956218, −2.45630065209201146777977592173, −0.18117613672399972289656012796,
1.23088984517142501884850294330, 1.64346976005425093249839407508, 2.89891829240674223251911496352, 3.85676706846165223567941759290, 4.76911716785583111884395203470, 5.91339900931436587634682368140, 6.56008320259746766802898049846, 7.16627588304168852570438866281, 7.63160751573488777814412398505, 8.189768577543337456022691851440