L(s) = 1 | + 3.08i·3-s + 4.29i·7-s − 6.51·9-s − 1.21·11-s − 5.08i·13-s − 2.29i·17-s + 19-s − 13.2·21-s − 7.67i·23-s − 10.8i·27-s + 0.489·29-s − 3.74i·33-s − 2i·37-s + 15.6·39-s − 4.16·41-s + ⋯ |
L(s) = 1 | + 1.78i·3-s + 1.62i·7-s − 2.17·9-s − 0.365·11-s − 1.41i·13-s − 0.557i·17-s + 0.229·19-s − 2.89·21-s − 1.60i·23-s − 2.08i·27-s + 0.0909·29-s − 0.651i·33-s − 0.328i·37-s + 2.51·39-s − 0.650·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6123491332\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6123491332\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 - 3.08iT - 3T^{2} \) |
| 7 | \( 1 - 4.29iT - 7T^{2} \) |
| 11 | \( 1 + 1.21T + 11T^{2} \) |
| 13 | \( 1 + 5.08iT - 13T^{2} \) |
| 17 | \( 1 + 2.29iT - 17T^{2} \) |
| 23 | \( 1 + 7.67iT - 23T^{2} \) |
| 29 | \( 1 - 0.489T + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + 4.16T + 41T^{2} \) |
| 43 | \( 1 + 12.9iT - 43T^{2} \) |
| 47 | \( 1 + 5.80iT - 47T^{2} \) |
| 53 | \( 1 + 1.93iT - 53T^{2} \) |
| 59 | \( 1 - 11.0T + 59T^{2} \) |
| 61 | \( 1 + 5.38T + 61T^{2} \) |
| 67 | \( 1 - 2.48iT - 67T^{2} \) |
| 71 | \( 1 + 11.7T + 71T^{2} \) |
| 73 | \( 1 - 8.46iT - 73T^{2} \) |
| 79 | \( 1 + 1.83T + 79T^{2} \) |
| 83 | \( 1 - 7.02iT - 83T^{2} \) |
| 89 | \( 1 + 13.7T + 89T^{2} \) |
| 97 | \( 1 + 3.57iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.590870865685355767489217060915, −8.179836837340462387887825771707, −6.86659583918618434549370964103, −5.61204123343592595059291395406, −5.52510651675324663879447766850, −4.79207056184273708729411307530, −3.81834009142702967632493230365, −2.89920171658089562192851956218, −2.45630065209201146777977592173, −0.18117613672399972289656012796,
1.23088984517142501884850294330, 1.64346976005425093249839407508, 2.89891829240674223251911496352, 3.85676706846165223567941759290, 4.76911716785583111884395203470, 5.91339900931436587634682368140, 6.56008320259746766802898049846, 7.16627588304168852570438866281, 7.63160751573488777814412398505, 8.189768577543337456022691851440