L(s) = 1 | − 3.08i·3-s − 4.29i·7-s − 6.51·9-s − 1.21·11-s + 5.08i·13-s + 2.29i·17-s + 19-s − 13.2·21-s + 7.67i·23-s + 10.8i·27-s + 0.489·29-s + 3.74i·33-s + 2i·37-s + 15.6·39-s − 4.16·41-s + ⋯ |
L(s) = 1 | − 1.78i·3-s − 1.62i·7-s − 2.17·9-s − 0.365·11-s + 1.41i·13-s + 0.557i·17-s + 0.229·19-s − 2.89·21-s + 1.60i·23-s + 2.08i·27-s + 0.0909·29-s + 0.651i·33-s + 0.328i·37-s + 2.51·39-s − 0.650·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6123491332\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6123491332\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 + 3.08iT - 3T^{2} \) |
| 7 | \( 1 + 4.29iT - 7T^{2} \) |
| 11 | \( 1 + 1.21T + 11T^{2} \) |
| 13 | \( 1 - 5.08iT - 13T^{2} \) |
| 17 | \( 1 - 2.29iT - 17T^{2} \) |
| 23 | \( 1 - 7.67iT - 23T^{2} \) |
| 29 | \( 1 - 0.489T + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 + 4.16T + 41T^{2} \) |
| 43 | \( 1 - 12.9iT - 43T^{2} \) |
| 47 | \( 1 - 5.80iT - 47T^{2} \) |
| 53 | \( 1 - 1.93iT - 53T^{2} \) |
| 59 | \( 1 - 11.0T + 59T^{2} \) |
| 61 | \( 1 + 5.38T + 61T^{2} \) |
| 67 | \( 1 + 2.48iT - 67T^{2} \) |
| 71 | \( 1 + 11.7T + 71T^{2} \) |
| 73 | \( 1 + 8.46iT - 73T^{2} \) |
| 79 | \( 1 + 1.83T + 79T^{2} \) |
| 83 | \( 1 + 7.02iT - 83T^{2} \) |
| 89 | \( 1 + 13.7T + 89T^{2} \) |
| 97 | \( 1 - 3.57iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.189768577543337456022691851440, −7.63160751573488777814412398505, −7.16627588304168852570438866281, −6.56008320259746766802898049846, −5.91339900931436587634682368140, −4.76911716785583111884395203470, −3.85676706846165223567941759290, −2.89891829240674223251911496352, −1.64346976005425093249839407508, −1.23088984517142501884850294330,
0.18117613672399972289656012796, 2.45630065209201146777977592173, 2.89920171658089562192851956218, 3.81834009142702967632493230365, 4.79207056184273708729411307530, 5.52510651675324663879447766850, 5.61204123343592595059291395406, 6.86659583918618434549370964103, 8.179836837340462387887825771707, 8.590870865685355767489217060915