Properties

Label 2-3800-152.139-c0-0-3
Degree 22
Conductor 38003800
Sign 0.1880.982i0.188 - 0.982i
Analytic cond. 1.896441.89644
Root an. cond. 1.377111.37711
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 + 0.642i)2-s + (1.43 + 0.524i)3-s + (0.173 − 0.984i)4-s + (−1.43 + 0.524i)6-s + (0.500 + 0.866i)8-s + (1.03 + 0.866i)9-s + (0.939 + 1.62i)11-s + (0.766 − 1.32i)12-s + (−0.939 − 0.342i)16-s + (0.766 − 0.642i)17-s − 1.34·18-s + (0.173 − 0.984i)19-s + (−1.76 − 0.642i)22-s + (0.266 + 1.50i)24-s + (0.266 + 0.460i)27-s + ⋯
L(s)  = 1  + (−0.766 + 0.642i)2-s + (1.43 + 0.524i)3-s + (0.173 − 0.984i)4-s + (−1.43 + 0.524i)6-s + (0.500 + 0.866i)8-s + (1.03 + 0.866i)9-s + (0.939 + 1.62i)11-s + (0.766 − 1.32i)12-s + (−0.939 − 0.342i)16-s + (0.766 − 0.642i)17-s − 1.34·18-s + (0.173 − 0.984i)19-s + (−1.76 − 0.642i)22-s + (0.266 + 1.50i)24-s + (0.266 + 0.460i)27-s + ⋯

Functional equation

Λ(s)=(3800s/2ΓC(s)L(s)=((0.1880.982i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3800s/2ΓC(s)L(s)=((0.1880.982i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 38003800    =    2352192^{3} \cdot 5^{2} \cdot 19
Sign: 0.1880.982i0.188 - 0.982i
Analytic conductor: 1.896441.89644
Root analytic conductor: 1.377111.37711
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3800(1051,)\chi_{3800} (1051, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3800, ( :0), 0.1880.982i)(2,\ 3800,\ (\ :0),\ 0.188 - 0.982i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.5968630171.596863017
L(12)L(\frac12) \approx 1.5968630171.596863017
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
5 1 1
19 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
good3 1+(1.430.524i)T+(0.766+0.642i)T2 1 + (-1.43 - 0.524i)T + (0.766 + 0.642i)T^{2}
7 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
11 1+(0.9391.62i)T+(0.5+0.866i)T2 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2}
13 1+(0.766+0.642i)T2 1 + (-0.766 + 0.642i)T^{2}
17 1+(0.766+0.642i)T+(0.1730.984i)T2 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2}
23 1+(0.939+0.342i)T2 1 + (0.939 + 0.342i)T^{2}
29 1+(0.1730.984i)T2 1 + (-0.173 - 0.984i)T^{2}
31 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
37 1T2 1 - T^{2}
41 1+(0.326+0.118i)T+(0.766+0.642i)T2 1 + (0.326 + 0.118i)T + (0.766 + 0.642i)T^{2}
43 1+(0.1730.984i)T+(0.939+0.342i)T2 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2}
47 1+(0.1730.984i)T2 1 + (-0.173 - 0.984i)T^{2}
53 1+(0.939+0.342i)T2 1 + (0.939 + 0.342i)T^{2}
59 1+(1.431.20i)T+(0.1730.984i)T2 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2}
61 1+(0.939+0.342i)T2 1 + (0.939 + 0.342i)T^{2}
67 1+(0.266+0.223i)T+(0.173+0.984i)T2 1 + (0.266 + 0.223i)T + (0.173 + 0.984i)T^{2}
71 1+(0.9390.342i)T2 1 + (0.939 - 0.342i)T^{2}
73 1+(1.76+0.642i)T+(0.766+0.642i)T2 1 + (1.76 + 0.642i)T + (0.766 + 0.642i)T^{2}
79 1+(0.7660.642i)T2 1 + (-0.766 - 0.642i)T^{2}
83 1+(0.173+0.300i)T+(0.50.866i)T2 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2}
89 1+(0.939+0.342i)T+(0.7660.642i)T2 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2}
97 1+(0.2660.223i)T+(0.1730.984i)T2 1 + (0.266 - 0.223i)T + (0.173 - 0.984i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.059766421456119454654556736060, −8.146668712539112828265315621407, −7.42436031717628799647343862578, −7.05711739594252258225790290505, −6.07855195727046430716903194470, −4.85272830430224999361430437319, −4.44115732235627118357036754470, −3.27763253592235253427778556120, −2.35681088816189261826820645353, −1.45223696666061835205671100235, 1.16414841980705346392993377780, 1.86393399172571876064177440809, 3.07546935319514519677801288150, 3.40855795502559021738878300642, 4.15490901312524603297962828187, 5.76433482287113747945226134915, 6.53885836229998901212250633226, 7.46175747900631215452995322388, 8.063757410138753036047283010885, 8.518728157273354778866535136424

Graph of the ZZ-function along the critical line