L(s) = 1 | + (−0.766 − 0.642i)2-s + (1.43 − 0.524i)3-s + (0.173 + 0.984i)4-s + (−1.43 − 0.524i)6-s + (0.500 − 0.866i)8-s + (1.03 − 0.866i)9-s + (0.939 − 1.62i)11-s + (0.766 + 1.32i)12-s + (−0.939 + 0.342i)16-s + (0.766 + 0.642i)17-s − 1.34·18-s + (0.173 + 0.984i)19-s + (−1.76 + 0.642i)22-s + (0.266 − 1.50i)24-s + (0.266 − 0.460i)27-s + ⋯ |
L(s) = 1 | + (−0.766 − 0.642i)2-s + (1.43 − 0.524i)3-s + (0.173 + 0.984i)4-s + (−1.43 − 0.524i)6-s + (0.500 − 0.866i)8-s + (1.03 − 0.866i)9-s + (0.939 − 1.62i)11-s + (0.766 + 1.32i)12-s + (−0.939 + 0.342i)16-s + (0.766 + 0.642i)17-s − 1.34·18-s + (0.173 + 0.984i)19-s + (−1.76 + 0.642i)22-s + (0.266 − 1.50i)24-s + (0.266 − 0.460i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.596863017\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.596863017\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.766 + 0.642i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-0.173 - 0.984i)T \) |
good | 3 | \( 1 + (-1.43 + 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.766 - 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 23 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.173 + 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (1.43 + 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (0.266 - 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 73 | \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 97 | \( 1 + (0.266 + 0.223i)T + (0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.518728157273354778866535136424, −8.063757410138753036047283010885, −7.46175747900631215452995322388, −6.53885836229998901212250633226, −5.76433482287113747945226134915, −4.15490901312524603297962828187, −3.40855795502559021738878300642, −3.07546935319514519677801288150, −1.86393399172571876064177440809, −1.16414841980705346392993377780,
1.45223696666061835205671100235, 2.35681088816189261826820645353, 3.27763253592235253427778556120, 4.44115732235627118357036754470, 4.85272830430224999361430437319, 6.07855195727046430716903194470, 7.05711739594252258225790290505, 7.42436031717628799647343862578, 8.146668712539112828265315621407, 9.059766421456119454654556736060