L(s) = 1 | + (−0.766 + 0.642i)2-s + (0.326 + 0.118i)3-s + (0.173 − 0.984i)4-s + (−0.326 + 0.118i)6-s + (0.500 + 0.866i)8-s + (−0.673 − 0.565i)9-s + (−0.173 − 0.300i)11-s + (0.173 − 0.300i)12-s + (−0.939 − 0.342i)16-s + (−1.53 + 1.28i)17-s + 0.879·18-s + (−0.939 + 0.342i)19-s + (0.326 + 0.118i)22-s + (0.0603 + 0.342i)24-s + (−0.326 − 0.565i)27-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)2-s + (0.326 + 0.118i)3-s + (0.173 − 0.984i)4-s + (−0.326 + 0.118i)6-s + (0.500 + 0.866i)8-s + (−0.673 − 0.565i)9-s + (−0.173 − 0.300i)11-s + (0.173 − 0.300i)12-s + (−0.939 − 0.342i)16-s + (−1.53 + 1.28i)17-s + 0.879·18-s + (−0.939 + 0.342i)19-s + (0.326 + 0.118i)22-s + (0.0603 + 0.342i)24-s + (−0.326 − 0.565i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1036343074\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1036343074\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.766 - 0.642i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (0.939 - 0.342i)T \) |
good | 3 | \( 1 + (-0.326 - 0.118i)T + (0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (1.53 - 1.28i)T + (0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (1.17 + 0.984i)T + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (-1.43 - 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (0.266 - 0.223i)T + (0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.881021293318728160751902383405, −8.410582605413685325449442453312, −7.896597841356794731488206918501, −6.71878242464560178446231330295, −6.35688661564013329079372763177, −5.62897233144176985526571212329, −4.61285802541679709603768043216, −3.75110389753935244370787086989, −2.56971745405072568368513128421, −1.64588176062350009232667802072,
0.06633626023977120830009807562, 1.82684618122980062342493503958, 2.50249483844104010825832177651, 3.23144642428906930605384559330, 4.41212893395538740889793640553, 5.00251187336911850766062152029, 6.31877777882005621787775285791, 7.01762484749934931403913945566, 7.70650018667620485029779266731, 8.470070722979701079321455517613