L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.499 + 0.866i)6-s − 0.999·8-s − 11-s + 0.999·12-s + (−0.5 + 0.866i)16-s + (1 − 1.73i)17-s + (−0.5 − 0.866i)19-s + (−0.5 + 0.866i)22-s + (0.5 − 0.866i)24-s − 27-s + (0.499 + 0.866i)32-s + (0.5 − 0.866i)33-s + (−0.999 − 1.73i)34-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.499 + 0.866i)6-s − 0.999·8-s − 11-s + 0.999·12-s + (−0.5 + 0.866i)16-s + (1 − 1.73i)17-s + (−0.5 − 0.866i)19-s + (−0.5 + 0.866i)22-s + (0.5 − 0.866i)24-s − 27-s + (0.499 + 0.866i)32-s + (0.5 − 0.866i)33-s + (−0.999 − 1.73i)34-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.305+0.952i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.305+0.952i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.305+0.952i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3051,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), −0.305+0.952i)
|
Particular Values
L(21) |
≈ |
1.005381333 |
L(21) |
≈ |
1.005381333 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 5 | 1 |
| 19 | 1+(0.5+0.866i)T |
good | 3 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 7 | 1−T2 |
| 11 | 1+T+T2 |
| 13 | 1+(0.5−0.866i)T2 |
| 17 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1−T2 |
| 37 | 1−T2 |
| 41 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−T+T2 |
| 89 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 97 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.801061667146172223900006302073, −7.67910070770663830479328246272, −6.94944209964752139845463856012, −5.66467494285632800173711656226, −5.32763178529595750794184896519, −4.67232190865074126792521798506, −3.91585151042771748337942254484, −2.92764953168571422288492782366, −2.20386241958171626950647796076, −0.54689964200041478865156603202,
1.30942933133815676285840403259, 2.61457635491670598605040696977, 3.69640326728159162261851970047, 4.40672017324912073846013203006, 5.58269055062843969766651745156, 5.91220156149461080410026856878, 6.53633365398466010734190753223, 7.46696163752520357293982429056, 7.908190608243251120909372638082, 8.455486710762704136513495198753