L(s) = 1 | + 2.96·5-s − 3.35·7-s − 1.61·11-s + 13-s − 2·17-s + 3.35·19-s − 6.70·23-s + 3.77·25-s − 2·29-s − 6.57·31-s − 9.92·35-s + 7.92·37-s − 6.96·41-s + 0.775·43-s + 2.38·47-s + 4.22·49-s − 11.9·53-s − 4.77·55-s + 0.312·59-s + 14.6·61-s + 2.96·65-s − 8.12·67-s − 4.31·71-s + 0.0752·73-s + 5.40·77-s − 12·79-s − 8.31·83-s + ⋯ |
L(s) = 1 | + 1.32·5-s − 1.26·7-s − 0.486·11-s + 0.277·13-s − 0.485·17-s + 0.768·19-s − 1.39·23-s + 0.755·25-s − 0.371·29-s − 1.18·31-s − 1.67·35-s + 1.30·37-s − 1.08·41-s + 0.118·43-s + 0.348·47-s + 0.603·49-s − 1.63·53-s − 0.643·55-s + 0.0407·59-s + 1.87·61-s + 0.367·65-s − 0.992·67-s − 0.511·71-s + 0.00880·73-s + 0.615·77-s − 1.35·79-s − 0.912·83-s + ⋯ |
Λ(s)=(=(3744s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3744s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1−T |
good | 5 | 1−2.96T+5T2 |
| 7 | 1+3.35T+7T2 |
| 11 | 1+1.61T+11T2 |
| 17 | 1+2T+17T2 |
| 19 | 1−3.35T+19T2 |
| 23 | 1+6.70T+23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+6.57T+31T2 |
| 37 | 1−7.92T+37T2 |
| 41 | 1+6.96T+41T2 |
| 43 | 1−0.775T+43T2 |
| 47 | 1−2.38T+47T2 |
| 53 | 1+11.9T+53T2 |
| 59 | 1−0.312T+59T2 |
| 61 | 1−14.6T+61T2 |
| 67 | 1+8.12T+67T2 |
| 71 | 1+4.31T+71T2 |
| 73 | 1−0.0752T+73T2 |
| 79 | 1+12T+79T2 |
| 83 | 1+8.31T+83T2 |
| 89 | 1+8.88T+89T2 |
| 97 | 1+7.92T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.208513110453880992616491427738, −7.27219446418248418344265826066, −6.53493475651358488646551380391, −5.86237492087646943619293221464, −5.46020096559540566522851589011, −4.26169233818429002857627996313, −3.30326384920402681131239776789, −2.49631119810651316349746927676, −1.58679715639157800024865947374, 0,
1.58679715639157800024865947374, 2.49631119810651316349746927676, 3.30326384920402681131239776789, 4.26169233818429002857627996313, 5.46020096559540566522851589011, 5.86237492087646943619293221464, 6.53493475651358488646551380391, 7.27219446418248418344265826066, 8.208513110453880992616491427738