Properties

Label 2-3744-1.1-c1-0-50
Degree $2$
Conductor $3744$
Sign $-1$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.96·5-s − 3.35·7-s − 1.61·11-s + 13-s − 2·17-s + 3.35·19-s − 6.70·23-s + 3.77·25-s − 2·29-s − 6.57·31-s − 9.92·35-s + 7.92·37-s − 6.96·41-s + 0.775·43-s + 2.38·47-s + 4.22·49-s − 11.9·53-s − 4.77·55-s + 0.312·59-s + 14.6·61-s + 2.96·65-s − 8.12·67-s − 4.31·71-s + 0.0752·73-s + 5.40·77-s − 12·79-s − 8.31·83-s + ⋯
L(s)  = 1  + 1.32·5-s − 1.26·7-s − 0.486·11-s + 0.277·13-s − 0.485·17-s + 0.768·19-s − 1.39·23-s + 0.755·25-s − 0.371·29-s − 1.18·31-s − 1.67·35-s + 1.30·37-s − 1.08·41-s + 0.118·43-s + 0.348·47-s + 0.603·49-s − 1.63·53-s − 0.643·55-s + 0.0407·59-s + 1.87·61-s + 0.367·65-s − 0.992·67-s − 0.511·71-s + 0.00880·73-s + 0.615·77-s − 1.35·79-s − 0.912·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2.96T + 5T^{2} \)
7 \( 1 + 3.35T + 7T^{2} \)
11 \( 1 + 1.61T + 11T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - 3.35T + 19T^{2} \)
23 \( 1 + 6.70T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 6.57T + 31T^{2} \)
37 \( 1 - 7.92T + 37T^{2} \)
41 \( 1 + 6.96T + 41T^{2} \)
43 \( 1 - 0.775T + 43T^{2} \)
47 \( 1 - 2.38T + 47T^{2} \)
53 \( 1 + 11.9T + 53T^{2} \)
59 \( 1 - 0.312T + 59T^{2} \)
61 \( 1 - 14.6T + 61T^{2} \)
67 \( 1 + 8.12T + 67T^{2} \)
71 \( 1 + 4.31T + 71T^{2} \)
73 \( 1 - 0.0752T + 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 8.31T + 83T^{2} \)
89 \( 1 + 8.88T + 89T^{2} \)
97 \( 1 + 7.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.208513110453880992616491427738, −7.27219446418248418344265826066, −6.53493475651358488646551380391, −5.86237492087646943619293221464, −5.46020096559540566522851589011, −4.26169233818429002857627996313, −3.30326384920402681131239776789, −2.49631119810651316349746927676, −1.58679715639157800024865947374, 0, 1.58679715639157800024865947374, 2.49631119810651316349746927676, 3.30326384920402681131239776789, 4.26169233818429002857627996313, 5.46020096559540566522851589011, 5.86237492087646943619293221464, 6.53493475651358488646551380391, 7.27219446418248418344265826066, 8.208513110453880992616491427738

Graph of the $Z$-function along the critical line