Properties

Label 2-3744-1.1-c1-0-48
Degree $2$
Conductor $3744$
Sign $-1$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.622·5-s + 4.42·7-s − 5.80·11-s + 13-s − 2·17-s − 4.42·19-s + 8.85·23-s − 4.61·25-s − 2·29-s − 7.18·31-s − 2.75·35-s + 0.755·37-s − 3.37·41-s − 7.61·43-s − 1.80·47-s + 12.6·49-s − 4.75·53-s + 3.61·55-s − 11.0·59-s − 8.10·61-s − 0.622·65-s + 8.04·67-s + 7.05·71-s + 7.24·73-s − 25.7·77-s − 12·79-s + 3.05·83-s + ⋯
L(s)  = 1  − 0.278·5-s + 1.67·7-s − 1.75·11-s + 0.277·13-s − 0.485·17-s − 1.01·19-s + 1.84·23-s − 0.922·25-s − 0.371·29-s − 1.29·31-s − 0.465·35-s + 0.124·37-s − 0.527·41-s − 1.16·43-s − 0.263·47-s + 1.80·49-s − 0.653·53-s + 0.487·55-s − 1.43·59-s − 1.03·61-s − 0.0771·65-s + 0.982·67-s + 0.836·71-s + 0.847·73-s − 2.93·77-s − 1.35·79-s + 0.334·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 0.622T + 5T^{2} \)
7 \( 1 - 4.42T + 7T^{2} \)
11 \( 1 + 5.80T + 11T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 4.42T + 19T^{2} \)
23 \( 1 - 8.85T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 7.18T + 31T^{2} \)
37 \( 1 - 0.755T + 37T^{2} \)
41 \( 1 + 3.37T + 41T^{2} \)
43 \( 1 + 7.61T + 43T^{2} \)
47 \( 1 + 1.80T + 47T^{2} \)
53 \( 1 + 4.75T + 53T^{2} \)
59 \( 1 + 11.0T + 59T^{2} \)
61 \( 1 + 8.10T + 61T^{2} \)
67 \( 1 - 8.04T + 67T^{2} \)
71 \( 1 - 7.05T + 71T^{2} \)
73 \( 1 - 7.24T + 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 - 3.05T + 83T^{2} \)
89 \( 1 - 1.86T + 89T^{2} \)
97 \( 1 + 0.755T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.101791113111504924053916294011, −7.61688404820186998899285648138, −6.82492143040815592550082672363, −5.68333500682587525358335729836, −5.01832010177739854468275385703, −4.56184701465775866478694369938, −3.44076801967697816800379304937, −2.36291370244336333494585776893, −1.57938427913110355421802480159, 0, 1.57938427913110355421802480159, 2.36291370244336333494585776893, 3.44076801967697816800379304937, 4.56184701465775866478694369938, 5.01832010177739854468275385703, 5.68333500682587525358335729836, 6.82492143040815592550082672363, 7.61688404820186998899285648138, 8.101791113111504924053916294011

Graph of the $Z$-function along the critical line