L(s) = 1 | − 0.561·5-s + 0.561·7-s + 2·11-s − 13-s + 0.561·17-s − 6·19-s − 4.68·25-s + 8.24·29-s − 7.12·31-s − 0.315·35-s − 9.68·37-s − 7.12·41-s + 8.80·43-s + 1.68·47-s − 6.68·49-s + 4.87·53-s − 1.12·55-s − 6·59-s + 13.3·61-s + 0.561·65-s − 6·67-s − 1.68·71-s + 10·73-s + 1.12·77-s − 12·79-s − 17.3·83-s − 0.315·85-s + ⋯ |
L(s) = 1 | − 0.251·5-s + 0.212·7-s + 0.603·11-s − 0.277·13-s + 0.136·17-s − 1.37·19-s − 0.936·25-s + 1.53·29-s − 1.27·31-s − 0.0533·35-s − 1.59·37-s − 1.11·41-s + 1.34·43-s + 0.245·47-s − 0.954·49-s + 0.669·53-s − 0.151·55-s − 0.781·59-s + 1.71·61-s + 0.0696·65-s − 0.733·67-s − 0.199·71-s + 1.17·73-s + 0.127·77-s − 1.35·79-s − 1.90·83-s − 0.0342·85-s + ⋯ |
Λ(s)=(=(3744s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3744s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+T |
good | 5 | 1+0.561T+5T2 |
| 7 | 1−0.561T+7T2 |
| 11 | 1−2T+11T2 |
| 17 | 1−0.561T+17T2 |
| 19 | 1+6T+19T2 |
| 23 | 1+23T2 |
| 29 | 1−8.24T+29T2 |
| 31 | 1+7.12T+31T2 |
| 37 | 1+9.68T+37T2 |
| 41 | 1+7.12T+41T2 |
| 43 | 1−8.80T+43T2 |
| 47 | 1−1.68T+47T2 |
| 53 | 1−4.87T+53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1−13.3T+61T2 |
| 67 | 1+6T+67T2 |
| 71 | 1+1.68T+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1+12T+79T2 |
| 83 | 1+17.3T+83T2 |
| 89 | 1−8.24T+89T2 |
| 97 | 1+6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.310080589934033374812375342089, −7.33713268528036076349461049532, −6.74069179733242319110287892029, −5.94728239294354965613847389707, −5.08379743035954149505590828294, −4.23642977810300404332541306626, −3.58569493556401252252580430744, −2.43470077497720609517368412384, −1.49264770548250293594637876598, 0,
1.49264770548250293594637876598, 2.43470077497720609517368412384, 3.58569493556401252252580430744, 4.23642977810300404332541306626, 5.08379743035954149505590828294, 5.94728239294354965613847389707, 6.74069179733242319110287892029, 7.33713268528036076349461049532, 8.310080589934033374812375342089