Properties

Label 2-3744-1.1-c1-0-38
Degree $2$
Conductor $3744$
Sign $-1$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s + 2·11-s + 13-s + 3·17-s − 2·19-s + 4·23-s − 4·25-s − 2·29-s − 4·31-s + 3·35-s + 5·37-s + 12·41-s − 7·43-s − 9·47-s + 2·49-s − 4·53-s − 2·55-s + 6·59-s − 4·61-s − 65-s + 10·67-s − 15·71-s − 2·73-s − 6·77-s + 8·79-s − 4·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s + 0.603·11-s + 0.277·13-s + 0.727·17-s − 0.458·19-s + 0.834·23-s − 4/5·25-s − 0.371·29-s − 0.718·31-s + 0.507·35-s + 0.821·37-s + 1.87·41-s − 1.06·43-s − 1.31·47-s + 2/7·49-s − 0.549·53-s − 0.269·55-s + 0.781·59-s − 0.512·61-s − 0.124·65-s + 1.22·67-s − 1.78·71-s − 0.234·73-s − 0.683·77-s + 0.900·79-s − 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 + 7 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + 4 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.069287068407326044308270083618, −7.43349489084068026273091343648, −6.58077620798120174116715076060, −6.08062567625954929148194792858, −5.16574128381926105856746207319, −4.07091054811134105912777170722, −3.54020682240368361077395499750, −2.67039823935118854544464566270, −1.33035396953510359861485977690, 0, 1.33035396953510359861485977690, 2.67039823935118854544464566270, 3.54020682240368361077395499750, 4.07091054811134105912777170722, 5.16574128381926105856746207319, 6.08062567625954929148194792858, 6.58077620798120174116715076060, 7.43349489084068026273091343648, 8.069287068407326044308270083618

Graph of the $Z$-function along the critical line