L(s) = 1 | + (−0.730 − 1.21i)2-s + (1.49 − 1.49i)3-s + (−0.932 + 1.76i)4-s + (−1.17 − 1.17i)5-s + (−2.89 − 0.717i)6-s − 0.836i·7-s + (2.82 − 0.163i)8-s − 1.46i·9-s + (−0.563 + 2.27i)10-s + (−2.72 − 2.72i)11-s + (1.24 + 4.03i)12-s + (3.86 − 3.86i)13-s + (−1.01 + 0.611i)14-s − 3.50·15-s + (−2.26 − 3.29i)16-s − 6.79·17-s + ⋯ |
L(s) = 1 | + (−0.516 − 0.856i)2-s + (0.862 − 0.862i)3-s + (−0.466 + 0.884i)4-s + (−0.524 − 0.524i)5-s + (−1.18 − 0.292i)6-s − 0.316i·7-s + (0.998 − 0.0577i)8-s − 0.487i·9-s + (−0.178 + 0.719i)10-s + (−0.823 − 0.823i)11-s + (0.360 + 1.16i)12-s + (1.07 − 1.07i)13-s + (−0.270 + 0.163i)14-s − 0.904·15-s + (−0.565 − 0.824i)16-s − 1.64·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(−0.978+0.206i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(−0.978+0.206i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
−0.978+0.206i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(277,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), −0.978+0.206i)
|
Particular Values
L(1) |
≈ |
0.107394−1.02929i |
L(21) |
≈ |
0.107394−1.02929i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.730+1.21i)T |
| 23 | 1−iT |
good | 3 | 1+(−1.49+1.49i)T−3iT2 |
| 5 | 1+(1.17+1.17i)T+5iT2 |
| 7 | 1+0.836iT−7T2 |
| 11 | 1+(2.72+2.72i)T+11iT2 |
| 13 | 1+(−3.86+3.86i)T−13iT2 |
| 17 | 1+6.79T+17T2 |
| 19 | 1+(2.46−2.46i)T−19iT2 |
| 29 | 1+(−3.58+3.58i)T−29iT2 |
| 31 | 1−5.64T+31T2 |
| 37 | 1+(−5.17−5.17i)T+37iT2 |
| 41 | 1−2.36iT−41T2 |
| 43 | 1+(4.86+4.86i)T+43iT2 |
| 47 | 1+6.69T+47T2 |
| 53 | 1+(−5.97−5.97i)T+53iT2 |
| 59 | 1+(2.79+2.79i)T+59iT2 |
| 61 | 1+(−8.82+8.82i)T−61iT2 |
| 67 | 1+(−0.659+0.659i)T−67iT2 |
| 71 | 1+12.0iT−71T2 |
| 73 | 1−9.63iT−73T2 |
| 79 | 1+0.450T+79T2 |
| 83 | 1+(−9.95+9.95i)T−83iT2 |
| 89 | 1+4.51iT−89T2 |
| 97 | 1+2.31T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.93411607338609696268088148796, −10.21916016720917507940416899690, −8.719091260814787657327481540430, −8.300390448304282227589421167895, −7.82293505466857752503107930543, −6.41487598456945408092999703373, −4.64175895655977580855790592459, −3.41355724765996220278334269970, −2.33977441100508406934107123901, −0.76512604202615608171771781712,
2.39511395399818928211086739556, 4.03335339351287684093780284230, 4.77345448491554585162702474386, 6.40563439695196134229038413102, 7.13450759050434410048011342002, 8.441972792723812279691101916206, 8.831903277487998403909179895114, 9.765020118920476756972814873279, 10.67242122815063784638537701519, 11.42595771280400504049348432274