L(s) = 1 | + (−0.730 + 1.21i)2-s + (1.49 + 1.49i)3-s + (−0.932 − 1.76i)4-s + (−1.17 + 1.17i)5-s + (−2.89 + 0.717i)6-s + 0.836i·7-s + (2.82 + 0.163i)8-s + 1.46i·9-s + (−0.563 − 2.27i)10-s + (−2.72 + 2.72i)11-s + (1.24 − 4.03i)12-s + (3.86 + 3.86i)13-s + (−1.01 − 0.611i)14-s − 3.50·15-s + (−2.26 + 3.29i)16-s − 6.79·17-s + ⋯ |
L(s) = 1 | + (−0.516 + 0.856i)2-s + (0.862 + 0.862i)3-s + (−0.466 − 0.884i)4-s + (−0.524 + 0.524i)5-s + (−1.18 + 0.292i)6-s + 0.316i·7-s + (0.998 + 0.0577i)8-s + 0.487i·9-s + (−0.178 − 0.719i)10-s + (−0.823 + 0.823i)11-s + (0.360 − 1.16i)12-s + (1.07 + 1.07i)13-s + (−0.270 − 0.163i)14-s − 0.904·15-s + (−0.565 + 0.824i)16-s − 1.64·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.206i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.978 - 0.206i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.107394 + 1.02929i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.107394 + 1.02929i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.730 - 1.21i)T \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (-1.49 - 1.49i)T + 3iT^{2} \) |
| 5 | \( 1 + (1.17 - 1.17i)T - 5iT^{2} \) |
| 7 | \( 1 - 0.836iT - 7T^{2} \) |
| 11 | \( 1 + (2.72 - 2.72i)T - 11iT^{2} \) |
| 13 | \( 1 + (-3.86 - 3.86i)T + 13iT^{2} \) |
| 17 | \( 1 + 6.79T + 17T^{2} \) |
| 19 | \( 1 + (2.46 + 2.46i)T + 19iT^{2} \) |
| 29 | \( 1 + (-3.58 - 3.58i)T + 29iT^{2} \) |
| 31 | \( 1 - 5.64T + 31T^{2} \) |
| 37 | \( 1 + (-5.17 + 5.17i)T - 37iT^{2} \) |
| 41 | \( 1 + 2.36iT - 41T^{2} \) |
| 43 | \( 1 + (4.86 - 4.86i)T - 43iT^{2} \) |
| 47 | \( 1 + 6.69T + 47T^{2} \) |
| 53 | \( 1 + (-5.97 + 5.97i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.79 - 2.79i)T - 59iT^{2} \) |
| 61 | \( 1 + (-8.82 - 8.82i)T + 61iT^{2} \) |
| 67 | \( 1 + (-0.659 - 0.659i)T + 67iT^{2} \) |
| 71 | \( 1 - 12.0iT - 71T^{2} \) |
| 73 | \( 1 + 9.63iT - 73T^{2} \) |
| 79 | \( 1 + 0.450T + 79T^{2} \) |
| 83 | \( 1 + (-9.95 - 9.95i)T + 83iT^{2} \) |
| 89 | \( 1 - 4.51iT - 89T^{2} \) |
| 97 | \( 1 + 2.31T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42595771280400504049348432274, −10.67242122815063784638537701519, −9.765020118920476756972814873279, −8.831903277487998403909179895114, −8.441972792723812279691101916206, −7.13450759050434410048011342002, −6.40563439695196134229038413102, −4.77345448491554585162702474386, −4.03335339351287684093780284230, −2.39511395399818928211086739556,
0.76512604202615608171771781712, 2.33977441100508406934107123901, 3.41355724765996220278334269970, 4.64175895655977580855790592459, 6.41487598456945408092999703373, 7.82293505466857752503107930543, 8.300390448304282227589421167895, 8.719091260814787657327481540430, 10.21916016720917507940416899690, 10.93411607338609696268088148796