L(s) = 1 | + (1.10 + 0.887i)2-s + (0.631 + 0.631i)3-s + (0.425 + 1.95i)4-s + (−2.74 + 2.74i)5-s + (0.135 + 1.25i)6-s − 1.52i·7-s + (−1.26 + 2.52i)8-s − 2.20i·9-s + (−5.44 + 0.585i)10-s + (−2.02 + 2.02i)11-s + (−0.965 + 1.50i)12-s + (2.71 + 2.71i)13-s + (1.35 − 1.68i)14-s − 3.46·15-s + (−3.63 + 1.66i)16-s + 3.66·17-s + ⋯ |
L(s) = 1 | + (0.778 + 0.627i)2-s + (0.364 + 0.364i)3-s + (0.212 + 0.977i)4-s + (−1.22 + 1.22i)5-s + (0.0551 + 0.512i)6-s − 0.577i·7-s + (−0.447 + 0.894i)8-s − 0.734i·9-s + (−1.72 + 0.185i)10-s + (−0.609 + 0.609i)11-s + (−0.278 + 0.433i)12-s + (0.753 + 0.753i)13-s + (0.362 − 0.450i)14-s − 0.893·15-s + (−0.909 + 0.415i)16-s + 0.888·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.731 - 0.681i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.731 - 0.681i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.653864 + 1.66176i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.653864 + 1.66176i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.10 - 0.887i)T \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (-0.631 - 0.631i)T + 3iT^{2} \) |
| 5 | \( 1 + (2.74 - 2.74i)T - 5iT^{2} \) |
| 7 | \( 1 + 1.52iT - 7T^{2} \) |
| 11 | \( 1 + (2.02 - 2.02i)T - 11iT^{2} \) |
| 13 | \( 1 + (-2.71 - 2.71i)T + 13iT^{2} \) |
| 17 | \( 1 - 3.66T + 17T^{2} \) |
| 19 | \( 1 + (-1.20 - 1.20i)T + 19iT^{2} \) |
| 29 | \( 1 + (-2.52 - 2.52i)T + 29iT^{2} \) |
| 31 | \( 1 - 2.74T + 31T^{2} \) |
| 37 | \( 1 + (4.37 - 4.37i)T - 37iT^{2} \) |
| 41 | \( 1 - 7.70iT - 41T^{2} \) |
| 43 | \( 1 + (-8.96 + 8.96i)T - 43iT^{2} \) |
| 47 | \( 1 - 4.24T + 47T^{2} \) |
| 53 | \( 1 + (7.11 - 7.11i)T - 53iT^{2} \) |
| 59 | \( 1 + (-5.81 + 5.81i)T - 59iT^{2} \) |
| 61 | \( 1 + (6.37 + 6.37i)T + 61iT^{2} \) |
| 67 | \( 1 + (0.0827 + 0.0827i)T + 67iT^{2} \) |
| 71 | \( 1 - 6.62iT - 71T^{2} \) |
| 73 | \( 1 + 7.91iT - 73T^{2} \) |
| 79 | \( 1 - 6.42T + 79T^{2} \) |
| 83 | \( 1 + (11.6 + 11.6i)T + 83iT^{2} \) |
| 89 | \( 1 + 2.76iT - 89T^{2} \) |
| 97 | \( 1 + 6.61T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.88836286112091698990610155580, −10.97794660765196669560705601413, −10.08121250753834210452631301938, −8.675452362437172014119323119940, −7.70569179779720876992325235466, −7.06160292293917870811064049054, −6.19435788348049679996988094711, −4.52854637059421615871476423970, −3.71695112095465242551714340924, −2.98487059449252050967082662796,
0.983335368265266889618073751129, 2.74559376709046905725743728081, 3.87637154399835357483845979744, 5.07898179216185446478130753850, 5.73419072072003425153551368408, 7.52322516862238707816996653425, 8.259384874211575978546265451813, 9.060522937713866997663256375865, 10.46536035536175299035096825456, 11.28959214732605859443085029322