L(s) = 1 | + (1.10 + 0.887i)2-s + (0.631 + 0.631i)3-s + (0.425 + 1.95i)4-s + (−2.74 + 2.74i)5-s + (0.135 + 1.25i)6-s − 1.52i·7-s + (−1.26 + 2.52i)8-s − 2.20i·9-s + (−5.44 + 0.585i)10-s + (−2.02 + 2.02i)11-s + (−0.965 + 1.50i)12-s + (2.71 + 2.71i)13-s + (1.35 − 1.68i)14-s − 3.46·15-s + (−3.63 + 1.66i)16-s + 3.66·17-s + ⋯ |
L(s) = 1 | + (0.778 + 0.627i)2-s + (0.364 + 0.364i)3-s + (0.212 + 0.977i)4-s + (−1.22 + 1.22i)5-s + (0.0551 + 0.512i)6-s − 0.577i·7-s + (−0.447 + 0.894i)8-s − 0.734i·9-s + (−1.72 + 0.185i)10-s + (−0.609 + 0.609i)11-s + (−0.278 + 0.433i)12-s + (0.753 + 0.753i)13-s + (0.362 − 0.450i)14-s − 0.893·15-s + (−0.909 + 0.415i)16-s + 0.888·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(−0.731−0.681i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(−0.731−0.681i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
−0.731−0.681i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), −0.731−0.681i)
|
Particular Values
L(1) |
≈ |
0.653864+1.66176i |
L(21) |
≈ |
0.653864+1.66176i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.10−0.887i)T |
| 23 | 1+iT |
good | 3 | 1+(−0.631−0.631i)T+3iT2 |
| 5 | 1+(2.74−2.74i)T−5iT2 |
| 7 | 1+1.52iT−7T2 |
| 11 | 1+(2.02−2.02i)T−11iT2 |
| 13 | 1+(−2.71−2.71i)T+13iT2 |
| 17 | 1−3.66T+17T2 |
| 19 | 1+(−1.20−1.20i)T+19iT2 |
| 29 | 1+(−2.52−2.52i)T+29iT2 |
| 31 | 1−2.74T+31T2 |
| 37 | 1+(4.37−4.37i)T−37iT2 |
| 41 | 1−7.70iT−41T2 |
| 43 | 1+(−8.96+8.96i)T−43iT2 |
| 47 | 1−4.24T+47T2 |
| 53 | 1+(7.11−7.11i)T−53iT2 |
| 59 | 1+(−5.81+5.81i)T−59iT2 |
| 61 | 1+(6.37+6.37i)T+61iT2 |
| 67 | 1+(0.0827+0.0827i)T+67iT2 |
| 71 | 1−6.62iT−71T2 |
| 73 | 1+7.91iT−73T2 |
| 79 | 1−6.42T+79T2 |
| 83 | 1+(11.6+11.6i)T+83iT2 |
| 89 | 1+2.76iT−89T2 |
| 97 | 1+6.61T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.88836286112091698990610155580, −10.97794660765196669560705601413, −10.08121250753834210452631301938, −8.675452362437172014119323119940, −7.70569179779720876992325235466, −7.06160292293917870811064049054, −6.19435788348049679996988094711, −4.52854637059421615871476423970, −3.71695112095465242551714340924, −2.98487059449252050967082662796,
0.983335368265266889618073751129, 2.74559376709046905725743728081, 3.87637154399835357483845979744, 5.07898179216185446478130753850, 5.73419072072003425153551368408, 7.52322516862238707816996653425, 8.259384874211575978546265451813, 9.060522937713866997663256375865, 10.46536035536175299035096825456, 11.28959214732605859443085029322