L(s) = 1 | + (1.10 − 0.887i)2-s + (0.631 − 0.631i)3-s + (0.425 − 1.95i)4-s + (−2.74 − 2.74i)5-s + (0.135 − 1.25i)6-s + 1.52i·7-s + (−1.26 − 2.52i)8-s + 2.20i·9-s + (−5.44 − 0.585i)10-s + (−2.02 − 2.02i)11-s + (−0.965 − 1.50i)12-s + (2.71 − 2.71i)13-s + (1.35 + 1.68i)14-s − 3.46·15-s + (−3.63 − 1.66i)16-s + 3.66·17-s + ⋯ |
L(s) = 1 | + (0.778 − 0.627i)2-s + (0.364 − 0.364i)3-s + (0.212 − 0.977i)4-s + (−1.22 − 1.22i)5-s + (0.0551 − 0.512i)6-s + 0.577i·7-s + (−0.447 − 0.894i)8-s + 0.734i·9-s + (−1.72 − 0.185i)10-s + (−0.609 − 0.609i)11-s + (−0.278 − 0.433i)12-s + (0.753 − 0.753i)13-s + (0.362 + 0.450i)14-s − 0.893·15-s + (−0.909 − 0.415i)16-s + 0.888·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.731 + 0.681i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.731 + 0.681i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.653864 - 1.66176i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.653864 - 1.66176i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.10 + 0.887i)T \) |
| 23 | \( 1 - iT \) |
good | 3 | \( 1 + (-0.631 + 0.631i)T - 3iT^{2} \) |
| 5 | \( 1 + (2.74 + 2.74i)T + 5iT^{2} \) |
| 7 | \( 1 - 1.52iT - 7T^{2} \) |
| 11 | \( 1 + (2.02 + 2.02i)T + 11iT^{2} \) |
| 13 | \( 1 + (-2.71 + 2.71i)T - 13iT^{2} \) |
| 17 | \( 1 - 3.66T + 17T^{2} \) |
| 19 | \( 1 + (-1.20 + 1.20i)T - 19iT^{2} \) |
| 29 | \( 1 + (-2.52 + 2.52i)T - 29iT^{2} \) |
| 31 | \( 1 - 2.74T + 31T^{2} \) |
| 37 | \( 1 + (4.37 + 4.37i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.70iT - 41T^{2} \) |
| 43 | \( 1 + (-8.96 - 8.96i)T + 43iT^{2} \) |
| 47 | \( 1 - 4.24T + 47T^{2} \) |
| 53 | \( 1 + (7.11 + 7.11i)T + 53iT^{2} \) |
| 59 | \( 1 + (-5.81 - 5.81i)T + 59iT^{2} \) |
| 61 | \( 1 + (6.37 - 6.37i)T - 61iT^{2} \) |
| 67 | \( 1 + (0.0827 - 0.0827i)T - 67iT^{2} \) |
| 71 | \( 1 + 6.62iT - 71T^{2} \) |
| 73 | \( 1 - 7.91iT - 73T^{2} \) |
| 79 | \( 1 - 6.42T + 79T^{2} \) |
| 83 | \( 1 + (11.6 - 11.6i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.76iT - 89T^{2} \) |
| 97 | \( 1 + 6.61T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28959214732605859443085029322, −10.46536035536175299035096825456, −9.060522937713866997663256375865, −8.259384874211575978546265451813, −7.52322516862238707816996653425, −5.73419072072003425153551368408, −5.07898179216185446478130753850, −3.87637154399835357483845979744, −2.74559376709046905725743728081, −0.983335368265266889618073751129,
2.98487059449252050967082662796, 3.71695112095465242551714340924, 4.52854637059421615871476423970, 6.19435788348049679996988094711, 7.06160292293917870811064049054, 7.70569179779720876992325235466, 8.675452362437172014119323119940, 10.08121250753834210452631301938, 10.97794660765196669560705601413, 11.88836286112091698990610155580