L(s) = 1 | + (1.38 − 0.287i)2-s + (0.339 + 0.339i)3-s + (1.83 − 0.796i)4-s + (1.46 − 1.46i)5-s + (0.568 + 0.372i)6-s + 2.63i·7-s + (2.31 − 1.63i)8-s − 2.76i·9-s + (1.61 − 2.45i)10-s + (−2.99 + 2.99i)11-s + (0.893 + 0.352i)12-s + (−0.749 − 0.749i)13-s + (0.757 + 3.64i)14-s + 0.998·15-s + (2.72 − 2.92i)16-s − 3.64·17-s + ⋯ |
L(s) = 1 | + (0.979 − 0.203i)2-s + (0.196 + 0.196i)3-s + (0.917 − 0.398i)4-s + (0.657 − 0.657i)5-s + (0.231 + 0.152i)6-s + 0.994i·7-s + (0.816 − 0.576i)8-s − 0.923i·9-s + (0.509 − 0.777i)10-s + (−0.901 + 0.901i)11-s + (0.258 + 0.101i)12-s + (−0.207 − 0.207i)13-s + (0.202 + 0.973i)14-s + 0.257·15-s + (0.682 − 0.730i)16-s − 0.885·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(0.936+0.350i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(0.936+0.350i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
0.936+0.350i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), 0.936+0.350i)
|
Particular Values
L(1) |
≈ |
2.63665−0.477676i |
L(21) |
≈ |
2.63665−0.477676i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.38+0.287i)T |
| 23 | 1+iT |
good | 3 | 1+(−0.339−0.339i)T+3iT2 |
| 5 | 1+(−1.46+1.46i)T−5iT2 |
| 7 | 1−2.63iT−7T2 |
| 11 | 1+(2.99−2.99i)T−11iT2 |
| 13 | 1+(0.749+0.749i)T+13iT2 |
| 17 | 1+3.64T+17T2 |
| 19 | 1+(−1.76−1.76i)T+19iT2 |
| 29 | 1+(−0.0790−0.0790i)T+29iT2 |
| 31 | 1+2.07T+31T2 |
| 37 | 1+(3.64−3.64i)T−37iT2 |
| 41 | 1−1.90iT−41T2 |
| 43 | 1+(−6.84+6.84i)T−43iT2 |
| 47 | 1+8.55T+47T2 |
| 53 | 1+(6.62−6.62i)T−53iT2 |
| 59 | 1+(5.45−5.45i)T−59iT2 |
| 61 | 1+(−2.13−2.13i)T+61iT2 |
| 67 | 1+(−3.51−3.51i)T+67iT2 |
| 71 | 1+1.61iT−71T2 |
| 73 | 1+14.4iT−73T2 |
| 79 | 1+12.5T+79T2 |
| 83 | 1+(−1.26−1.26i)T+83iT2 |
| 89 | 1+12.3iT−89T2 |
| 97 | 1−7.54T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.67331046134537991926051670959, −10.43055051161851484355695852987, −9.596587694967829241646983811956, −8.790614164973288290668028109915, −7.40141690428137971701284600117, −6.19792187276212811289909293263, −5.37176151774524990851548993173, −4.51571447069317620394101415623, −3.02976387776582137422094243857, −1.89314453486748937723889002260,
2.14647611322891899249383761149, 3.17806668114539975544731516127, 4.57073523551011673659973577738, 5.58455115885075479121458773326, 6.67541779815116205496210586145, 7.43952672869535936440227599559, 8.326986679551943293536942114158, 9.934659212313522878571839524724, 10.96201940963414219599887160547, 11.10960710558376953664746241946