L(s) = 1 | + (1.38 + 0.287i)2-s + (0.339 − 0.339i)3-s + (1.83 + 0.796i)4-s + (1.46 + 1.46i)5-s + (0.568 − 0.372i)6-s − 2.63i·7-s + (2.31 + 1.63i)8-s + 2.76i·9-s + (1.61 + 2.45i)10-s + (−2.99 − 2.99i)11-s + (0.893 − 0.352i)12-s + (−0.749 + 0.749i)13-s + (0.757 − 3.64i)14-s + 0.998·15-s + (2.72 + 2.92i)16-s − 3.64·17-s + ⋯ |
L(s) = 1 | + (0.979 + 0.203i)2-s + (0.196 − 0.196i)3-s + (0.917 + 0.398i)4-s + (0.657 + 0.657i)5-s + (0.231 − 0.152i)6-s − 0.994i·7-s + (0.816 + 0.576i)8-s + 0.923i·9-s + (0.509 + 0.777i)10-s + (−0.901 − 0.901i)11-s + (0.258 − 0.101i)12-s + (−0.207 + 0.207i)13-s + (0.202 − 0.973i)14-s + 0.257·15-s + (0.682 + 0.730i)16-s − 0.885·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.936 - 0.350i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.936 - 0.350i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.63665 + 0.477676i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.63665 + 0.477676i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 - 0.287i)T \) |
| 23 | \( 1 - iT \) |
good | 3 | \( 1 + (-0.339 + 0.339i)T - 3iT^{2} \) |
| 5 | \( 1 + (-1.46 - 1.46i)T + 5iT^{2} \) |
| 7 | \( 1 + 2.63iT - 7T^{2} \) |
| 11 | \( 1 + (2.99 + 2.99i)T + 11iT^{2} \) |
| 13 | \( 1 + (0.749 - 0.749i)T - 13iT^{2} \) |
| 17 | \( 1 + 3.64T + 17T^{2} \) |
| 19 | \( 1 + (-1.76 + 1.76i)T - 19iT^{2} \) |
| 29 | \( 1 + (-0.0790 + 0.0790i)T - 29iT^{2} \) |
| 31 | \( 1 + 2.07T + 31T^{2} \) |
| 37 | \( 1 + (3.64 + 3.64i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.90iT - 41T^{2} \) |
| 43 | \( 1 + (-6.84 - 6.84i)T + 43iT^{2} \) |
| 47 | \( 1 + 8.55T + 47T^{2} \) |
| 53 | \( 1 + (6.62 + 6.62i)T + 53iT^{2} \) |
| 59 | \( 1 + (5.45 + 5.45i)T + 59iT^{2} \) |
| 61 | \( 1 + (-2.13 + 2.13i)T - 61iT^{2} \) |
| 67 | \( 1 + (-3.51 + 3.51i)T - 67iT^{2} \) |
| 71 | \( 1 - 1.61iT - 71T^{2} \) |
| 73 | \( 1 - 14.4iT - 73T^{2} \) |
| 79 | \( 1 + 12.5T + 79T^{2} \) |
| 83 | \( 1 + (-1.26 + 1.26i)T - 83iT^{2} \) |
| 89 | \( 1 - 12.3iT - 89T^{2} \) |
| 97 | \( 1 - 7.54T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10960710558376953664746241946, −10.96201940963414219599887160547, −9.934659212313522878571839524724, −8.326986679551943293536942114158, −7.43952672869535936440227599559, −6.67541779815116205496210586145, −5.58455115885075479121458773326, −4.57073523551011673659973577738, −3.17806668114539975544731516127, −2.14647611322891899249383761149,
1.89314453486748937723889002260, 3.02976387776582137422094243857, 4.51571447069317620394101415623, 5.37176151774524990851548993173, 6.19792187276212811289909293263, 7.40141690428137971701284600117, 8.790614164973288290668028109915, 9.596587694967829241646983811956, 10.43055051161851484355695852987, 11.67331046134537991926051670959