| L(s) = 1 | + (−0.258 + 0.965i)3-s + (0.866 − 0.5i)4-s + (−0.866 − 0.499i)9-s + (0.258 + 0.965i)12-s + (−0.707 − 0.707i)13-s + (0.499 − 0.866i)16-s + (0.866 − 1.5i)19-s + (0.707 − 0.707i)27-s − 36-s + (1.67 − 0.448i)37-s + (0.866 − 0.500i)39-s + (0.707 + 0.707i)48-s + (−0.965 − 0.258i)52-s + (1.22 + 1.22i)57-s + (1.5 + 0.866i)61-s + ⋯ |
| L(s) = 1 | + (−0.258 + 0.965i)3-s + (0.866 − 0.5i)4-s + (−0.866 − 0.499i)9-s + (0.258 + 0.965i)12-s + (−0.707 − 0.707i)13-s + (0.499 − 0.866i)16-s + (0.866 − 1.5i)19-s + (0.707 − 0.707i)27-s − 36-s + (1.67 − 0.448i)37-s + (0.866 − 0.500i)39-s + (0.707 + 0.707i)48-s + (−0.965 − 0.258i)52-s + (1.22 + 1.22i)57-s + (1.5 + 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.365650021\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.365650021\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.258 - 0.965i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 17 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-1.67 + 0.448i)T + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.448 - 1.67i)T + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.896142316260864274675022333487, −7.83149142505741159829350521279, −7.16707221096268343070935824070, −6.35874893074043774523828796786, −5.53555184935899938957843145000, −5.07394034850124022629995416061, −4.15644170311274365915882302009, −2.98572472125017055766951590534, −2.50954305567291812728206334491, −0.850481352622514594211939691985,
1.35661043091872302330523056939, 2.20478517182560553954634276663, 3.01829352135375402252832802218, 4.00516147917412917173023270736, 5.17342539778882892054271450900, 5.99865572607450727686357744724, 6.58853240048017183351073043645, 7.30991069367307104986968636107, 7.84323779980519326834928406022, 8.389512391533676639048684307553