sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3675, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,3,10]))
pari:[g,chi] = znchar(Mod(1832,3675))
\(\chi_{3675}(68,\cdot)\)
\(\chi_{3675}(668,\cdot)\)
\(\chi_{3675}(1832,\cdot)\)
\(\chi_{3675}(2432,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,1177,2551)\) → \((-1,i,e\left(\frac{5}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
| \( \chi_{ 3675 }(1832, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{11}{12}\right)\) |
sage:chi.jacobi_sum(n)