Properties

Label 2-363-11.4-c1-0-16
Degree 22
Conductor 363363
Sign 0.469+0.882i-0.469 + 0.882i
Analytic cond. 2.898562.89856
Root an. cond. 1.702511.70251
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.640 + 0.465i)2-s + (0.309 − 0.951i)3-s + (−0.424 − 1.30i)4-s + (−2.72 + 1.98i)5-s + (0.640 − 0.465i)6-s + (−0.780 − 2.40i)7-s + (0.825 − 2.54i)8-s + (−0.809 − 0.587i)9-s − 2.67·10-s − 1.37·12-s + (−4.72 − 3.43i)13-s + (0.618 − 1.90i)14-s + (1.04 + 3.20i)15-s + (−0.507 + 0.368i)16-s + (2.16 − 1.57i)17-s + (−0.244 − 0.753i)18-s + ⋯
L(s)  = 1  + (0.453 + 0.329i)2-s + (0.178 − 0.549i)3-s + (−0.212 − 0.652i)4-s + (−1.22 + 0.886i)5-s + (0.261 − 0.190i)6-s + (−0.294 − 0.907i)7-s + (0.291 − 0.898i)8-s + (−0.269 − 0.195i)9-s − 0.844·10-s − 0.396·12-s + (−1.31 − 0.952i)13-s + (0.165 − 0.508i)14-s + (0.269 + 0.828i)15-s + (−0.126 + 0.0922i)16-s + (0.524 − 0.380i)17-s + (−0.0577 − 0.177i)18-s + ⋯

Functional equation

Λ(s)=(363s/2ΓC(s)L(s)=((0.469+0.882i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.469 + 0.882i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(363s/2ΓC(s+1/2)L(s)=((0.469+0.882i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.469 + 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 363363    =    31123 \cdot 11^{2}
Sign: 0.469+0.882i-0.469 + 0.882i
Analytic conductor: 2.898562.89856
Root analytic conductor: 1.702511.70251
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ363(202,)\chi_{363} (202, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 363, ( :1/2), 0.469+0.882i)(2,\ 363,\ (\ :1/2),\ -0.469 + 0.882i)

Particular Values

L(1)L(1) \approx 0.4872570.811327i0.487257 - 0.811327i
L(12)L(\frac12) \approx 0.4872570.811327i0.487257 - 0.811327i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
11 1 1
good2 1+(0.6400.465i)T+(0.618+1.90i)T2 1 + (-0.640 - 0.465i)T + (0.618 + 1.90i)T^{2}
5 1+(2.721.98i)T+(1.544.75i)T2 1 + (2.72 - 1.98i)T + (1.54 - 4.75i)T^{2}
7 1+(0.780+2.40i)T+(5.66+4.11i)T2 1 + (0.780 + 2.40i)T + (-5.66 + 4.11i)T^{2}
13 1+(4.72+3.43i)T+(4.01+12.3i)T2 1 + (4.72 + 3.43i)T + (4.01 + 12.3i)T^{2}
17 1+(2.16+1.57i)T+(5.2516.1i)T2 1 + (-2.16 + 1.57i)T + (5.25 - 16.1i)T^{2}
19 1+(0.290+0.893i)T+(15.311.1i)T2 1 + (-0.290 + 0.893i)T + (-15.3 - 11.1i)T^{2}
23 12T+23T2 1 - 2T + 23T^{2}
29 1+(0.2440.753i)T+(23.4+17.0i)T2 1 + (-0.244 - 0.753i)T + (-23.4 + 17.0i)T^{2}
31 1+(1.31+0.956i)T+(9.57+29.4i)T2 1 + (1.31 + 0.956i)T + (9.57 + 29.4i)T^{2}
37 1+(1.544.75i)T+(29.9+21.7i)T2 1 + (-1.54 - 4.75i)T + (-29.9 + 21.7i)T^{2}
41 1+(3.36+10.3i)T+(33.124.0i)T2 1 + (-3.36 + 10.3i)T + (-33.1 - 24.0i)T^{2}
43 16.63T+43T2 1 - 6.63T + 43T^{2}
47 1+(3.9312.1i)T+(38.027.6i)T2 1 + (3.93 - 12.1i)T + (-38.0 - 27.6i)T^{2}
53 1+(3.332.41i)T+(16.3+50.4i)T2 1 + (-3.33 - 2.41i)T + (16.3 + 50.4i)T^{2}
59 1+(1.85+5.70i)T+(47.7+34.6i)T2 1 + (1.85 + 5.70i)T + (-47.7 + 34.6i)T^{2}
61 1+(4.84+3.51i)T+(18.858.0i)T2 1 + (-4.84 + 3.51i)T + (18.8 - 58.0i)T^{2}
67 1+1.11T+67T2 1 + 1.11T + 67T^{2}
71 1+(8.69+6.31i)T+(21.967.5i)T2 1 + (-8.69 + 6.31i)T + (21.9 - 67.5i)T^{2}
73 1+(2.82+8.70i)T+(59.0+42.9i)T2 1 + (2.82 + 8.70i)T + (-59.0 + 42.9i)T^{2}
79 1+(3.322.41i)T+(24.4+75.1i)T2 1 + (-3.32 - 2.41i)T + (24.4 + 75.1i)T^{2}
83 1+(1.521.10i)T+(25.678.9i)T2 1 + (1.52 - 1.10i)T + (25.6 - 78.9i)T^{2}
89 1+0.627T+89T2 1 + 0.627T + 89T^{2}
97 1+(8.48+6.16i)T+(29.9+92.2i)T2 1 + (8.48 + 6.16i)T + (29.9 + 92.2i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.03572820982431825611533999411, −10.36844518623831580701042809717, −9.408715212549200981601070532859, −7.75294038368010207311574088057, −7.36017471726892485910620323785, −6.53300201701359643232738048421, −5.20228016391967731989204452068, −4.02232239845444830468545885196, −2.93766257978848011739561374825, −0.54342189078466628748981980560, 2.53898598041433881755967970756, 3.78545087316832722549747445997, 4.54837480578173902220939230639, 5.42890037863529505318734439049, 7.25923895911084520143787519428, 8.185337135395066024267705511938, 8.887116730131215245537041386624, 9.700030715122904142628911612950, 11.21211595636438214027286984362, 11.97663768300446330777269044560

Graph of the ZZ-function along the critical line