L(s) = 1 | + (1.30 + 0.951i)2-s + (0.309 − 0.951i)3-s + (0.190 + 0.587i)4-s + (0.309 − 0.224i)5-s + (1.30 − 0.951i)6-s + (−0.927 − 2.85i)7-s + (0.690 − 2.12i)8-s + (−0.809 − 0.587i)9-s + 0.618·10-s + 0.618·12-s + (5.04 + 3.66i)13-s + (1.5 − 4.61i)14-s + (−0.118 − 0.363i)15-s + (3.92 − 2.85i)16-s + (−0.5 + 0.363i)17-s + (−0.499 − 1.53i)18-s + ⋯ |
L(s) = 1 | + (0.925 + 0.672i)2-s + (0.178 − 0.549i)3-s + (0.0954 + 0.293i)4-s + (0.138 − 0.100i)5-s + (0.534 − 0.388i)6-s + (−0.350 − 1.07i)7-s + (0.244 − 0.751i)8-s + (−0.269 − 0.195i)9-s + 0.195·10-s + 0.178·12-s + (1.39 + 1.01i)13-s + (0.400 − 1.23i)14-s + (−0.0304 − 0.0937i)15-s + (0.981 − 0.713i)16-s + (−0.121 + 0.0881i)17-s + (−0.117 − 0.362i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.18789 - 0.424966i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.18789 - 0.424966i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-1.30 - 0.951i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (-0.309 + 0.224i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (0.927 + 2.85i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-5.04 - 3.66i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.363i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.263 + 0.812i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 5.47T + 23T^{2} \) |
| 29 | \( 1 + (-1.38 - 4.25i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.11 - 2.26i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (1.30 + 4.02i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.83 - 5.65i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 1.76T + 43T^{2} \) |
| 47 | \( 1 + (0.190 - 0.587i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.97 - 4.33i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.64 + 5.06i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.927 + 0.673i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 10.5T + 67T^{2} \) |
| 71 | \( 1 + (11.7 - 8.55i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (0.381 + 1.17i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-0.427 - 0.310i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (10.2 - 7.46i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 9.47T + 89T^{2} \) |
| 97 | \( 1 + (12.1 + 8.83i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53153967875107988974687381461, −10.50175440600152185558390426096, −9.502511511838861163313282369242, −8.359442629740444964680472338572, −7.16174617959020833457234934033, −6.59499183901965007070164906760, −5.69529136386931716985065287513, −4.32439820119788798275205486366, −3.53235334792978867159417635623, −1.35730264739982931749737324215,
2.29116944987890974546669924597, 3.28885919867012159462202789842, 4.24391109747656867894977990437, 5.53715165773940391836273667989, 6.13425150205134231176233639154, 8.101826672997573657269312259242, 8.629188344538009554208504873035, 9.925672497820429654364093572375, 10.67292136303796175608522307314, 11.73150049139990531066128980259