L(s) = 1 | + (1.30 + 0.951i)2-s + (0.309 − 0.951i)3-s + (0.190 + 0.587i)4-s + (0.309 − 0.224i)5-s + (1.30 − 0.951i)6-s + (−0.927 − 2.85i)7-s + (0.690 − 2.12i)8-s + (−0.809 − 0.587i)9-s + 0.618·10-s + 0.618·12-s + (5.04 + 3.66i)13-s + (1.5 − 4.61i)14-s + (−0.118 − 0.363i)15-s + (3.92 − 2.85i)16-s + (−0.5 + 0.363i)17-s + (−0.499 − 1.53i)18-s + ⋯ |
L(s) = 1 | + (0.925 + 0.672i)2-s + (0.178 − 0.549i)3-s + (0.0954 + 0.293i)4-s + (0.138 − 0.100i)5-s + (0.534 − 0.388i)6-s + (−0.350 − 1.07i)7-s + (0.244 − 0.751i)8-s + (−0.269 − 0.195i)9-s + 0.195·10-s + 0.178·12-s + (1.39 + 1.01i)13-s + (0.400 − 1.23i)14-s + (−0.0304 − 0.0937i)15-s + (0.981 − 0.713i)16-s + (−0.121 + 0.0881i)17-s + (−0.117 − 0.362i)18-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)(0.927+0.374i)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)(0.927+0.374i)Λ(1−s)
Degree: |
2 |
Conductor: |
363
= 3⋅112
|
Sign: |
0.927+0.374i
|
Analytic conductor: |
2.89856 |
Root analytic conductor: |
1.70251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ363(202,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 363, ( :1/2), 0.927+0.374i)
|
Particular Values
L(1) |
≈ |
2.18789−0.424966i |
L(21) |
≈ |
2.18789−0.424966i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.309+0.951i)T |
| 11 | 1 |
good | 2 | 1+(−1.30−0.951i)T+(0.618+1.90i)T2 |
| 5 | 1+(−0.309+0.224i)T+(1.54−4.75i)T2 |
| 7 | 1+(0.927+2.85i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−5.04−3.66i)T+(4.01+12.3i)T2 |
| 17 | 1+(0.5−0.363i)T+(5.25−16.1i)T2 |
| 19 | 1+(−0.263+0.812i)T+(−15.3−11.1i)T2 |
| 23 | 1+5.47T+23T2 |
| 29 | 1+(−1.38−4.25i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−3.11−2.26i)T+(9.57+29.4i)T2 |
| 37 | 1+(1.30+4.02i)T+(−29.9+21.7i)T2 |
| 41 | 1+(1.83−5.65i)T+(−33.1−24.0i)T2 |
| 43 | 1+1.76T+43T2 |
| 47 | 1+(0.190−0.587i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−5.97−4.33i)T+(16.3+50.4i)T2 |
| 59 | 1+(1.64+5.06i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−0.927+0.673i)T+(18.8−58.0i)T2 |
| 67 | 1−10.5T+67T2 |
| 71 | 1+(11.7−8.55i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.381+1.17i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−0.427−0.310i)T+(24.4+75.1i)T2 |
| 83 | 1+(10.2−7.46i)T+(25.6−78.9i)T2 |
| 89 | 1−9.47T+89T2 |
| 97 | 1+(12.1+8.83i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53153967875107988974687381461, −10.50175440600152185558390426096, −9.502511511838861163313282369242, −8.359442629740444964680472338572, −7.16174617959020833457234934033, −6.59499183901965007070164906760, −5.69529136386931716985065287513, −4.32439820119788798275205486366, −3.53235334792978867159417635623, −1.35730264739982931749737324215,
2.29116944987890974546669924597, 3.28885919867012159462202789842, 4.24391109747656867894977990437, 5.53715165773940391836273667989, 6.13425150205134231176233639154, 8.101826672997573657269312259242, 8.629188344538009554208504873035, 9.925672497820429654364093572375, 10.67292136303796175608522307314, 11.73150049139990531066128980259