L(s) = 1 | + (−1.40 − 1.01i)2-s + (−0.309 + 0.951i)3-s + (0.309 + 0.951i)4-s + (2.42 − 1.76i)5-s + (1.40 − 1.01i)6-s + (−1.07 − 3.29i)7-s + (−0.535 + 1.64i)8-s + (−0.809 − 0.587i)9-s − 5.19·10-s − 0.999·12-s + (1.40 + 1.01i)13-s + (−1.85 + 5.70i)14-s + (0.927 + 2.85i)15-s + (4.04 − 2.93i)16-s + (−1.40 + 1.01i)17-s + (0.535 + 1.64i)18-s + ⋯ |
L(s) = 1 | + (−0.990 − 0.719i)2-s + (−0.178 + 0.549i)3-s + (0.154 + 0.475i)4-s + (1.08 − 0.788i)5-s + (0.572 − 0.415i)6-s + (−0.404 − 1.24i)7-s + (−0.189 + 0.582i)8-s + (−0.269 − 0.195i)9-s − 1.64·10-s − 0.288·12-s + (0.388 + 0.282i)13-s + (−0.495 + 1.52i)14-s + (0.239 + 0.736i)15-s + (1.01 − 0.734i)16-s + (−0.339 + 0.246i)17-s + (0.126 + 0.388i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.659 + 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.659 + 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.296269 - 0.653897i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.296269 - 0.653897i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (1.40 + 1.01i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (-2.42 + 1.76i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.07 + 3.29i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.40 - 1.01i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.40 - 1.01i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.14 + 6.58i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 6T + 23T^{2} \) |
| 29 | \( 1 + (0.535 + 1.64i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3.23 + 2.35i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (3.39 + 10.4i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (0.535 - 1.64i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 3.46T + 43T^{2} \) |
| 47 | \( 1 + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-7.28 - 5.29i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.85 + 5.70i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 2T + 67T^{2} \) |
| 71 | \( 1 + (-4.85 + 3.52i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.14 - 6.58i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 9T + 89T^{2} \) |
| 97 | \( 1 + (-5.66 - 4.11i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75760871201764765517674130351, −10.14903837265714745238669008090, −9.327205882649217624252019710871, −8.922216903820059997046422527985, −7.55306187285961558761778222401, −6.17968794026763141748679282076, −5.13477699623572997110190246485, −3.88575524645190048200182066540, −2.14891460825547206488438341386, −0.69066536999235802947591352818,
1.88294261858518049186058766262, 3.26128540389374304852470714138, 5.68636494407671867570284717921, 6.11371113063223955329067002202, 6.99004298891475597601711863120, 8.085211006446370885746700496722, 8.887424843880581459253936569320, 9.825918203469499321583799647888, 10.40819516355744906395345353561, 11.84261289678431140258819798826