L(s) = 1 | + (−1.40 − 1.01i)2-s + (−0.309 + 0.951i)3-s + (0.309 + 0.951i)4-s + (2.42 − 1.76i)5-s + (1.40 − 1.01i)6-s + (−1.07 − 3.29i)7-s + (−0.535 + 1.64i)8-s + (−0.809 − 0.587i)9-s − 5.19·10-s − 0.999·12-s + (1.40 + 1.01i)13-s + (−1.85 + 5.70i)14-s + (0.927 + 2.85i)15-s + (4.04 − 2.93i)16-s + (−1.40 + 1.01i)17-s + (0.535 + 1.64i)18-s + ⋯ |
L(s) = 1 | + (−0.990 − 0.719i)2-s + (−0.178 + 0.549i)3-s + (0.154 + 0.475i)4-s + (1.08 − 0.788i)5-s + (0.572 − 0.415i)6-s + (−0.404 − 1.24i)7-s + (−0.189 + 0.582i)8-s + (−0.269 − 0.195i)9-s − 1.64·10-s − 0.288·12-s + (0.388 + 0.282i)13-s + (−0.495 + 1.52i)14-s + (0.239 + 0.736i)15-s + (1.01 − 0.734i)16-s + (−0.339 + 0.246i)17-s + (0.126 + 0.388i)18-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)(−0.659+0.751i)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)(−0.659+0.751i)Λ(1−s)
Degree: |
2 |
Conductor: |
363
= 3⋅112
|
Sign: |
−0.659+0.751i
|
Analytic conductor: |
2.89856 |
Root analytic conductor: |
1.70251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ363(202,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 363, ( :1/2), −0.659+0.751i)
|
Particular Values
L(1) |
≈ |
0.296269−0.653897i |
L(21) |
≈ |
0.296269−0.653897i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.309−0.951i)T |
| 11 | 1 |
good | 2 | 1+(1.40+1.01i)T+(0.618+1.90i)T2 |
| 5 | 1+(−2.42+1.76i)T+(1.54−4.75i)T2 |
| 7 | 1+(1.07+3.29i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−1.40−1.01i)T+(4.01+12.3i)T2 |
| 17 | 1+(1.40−1.01i)T+(5.25−16.1i)T2 |
| 19 | 1+(−2.14+6.58i)T+(−15.3−11.1i)T2 |
| 23 | 1+6T+23T2 |
| 29 | 1+(0.535+1.64i)T+(−23.4+17.0i)T2 |
| 31 | 1+(3.23+2.35i)T+(9.57+29.4i)T2 |
| 37 | 1+(3.39+10.4i)T+(−29.9+21.7i)T2 |
| 41 | 1+(0.535−1.64i)T+(−33.1−24.0i)T2 |
| 43 | 1−3.46T+43T2 |
| 47 | 1+(−38.0−27.6i)T2 |
| 53 | 1+(−7.28−5.29i)T+(16.3+50.4i)T2 |
| 59 | 1+(1.85+5.70i)T+(−47.7+34.6i)T2 |
| 61 | 1+(18.8−58.0i)T2 |
| 67 | 1+2T+67T2 |
| 71 | 1+(−4.85+3.52i)T+(21.9−67.5i)T2 |
| 73 | 1+(−2.14−6.58i)T+(−59.0+42.9i)T2 |
| 79 | 1+(24.4+75.1i)T2 |
| 83 | 1+(25.6−78.9i)T2 |
| 89 | 1−9T+89T2 |
| 97 | 1+(−5.66−4.11i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75760871201764765517674130351, −10.14903837265714745238669008090, −9.327205882649217624252019710871, −8.922216903820059997046422527985, −7.55306187285961558761778222401, −6.17968794026763141748679282076, −5.13477699623572997110190246485, −3.88575524645190048200182066540, −2.14891460825547206488438341386, −0.69066536999235802947591352818,
1.88294261858518049186058766262, 3.26128540389374304852470714138, 5.68636494407671867570284717921, 6.11371113063223955329067002202, 6.99004298891475597601711863120, 8.085211006446370885746700496722, 8.887424843880581459253936569320, 9.825918203469499321583799647888, 10.40819516355744906395345353561, 11.84261289678431140258819798826