Properties

Label 2-35904-1.1-c1-0-3
Degree $2$
Conductor $35904$
Sign $1$
Analytic cond. $286.694$
Root an. cond. $16.9320$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s + 9-s + 11-s − 4·13-s − 17-s − 8·19-s − 2·21-s − 6·23-s − 5·25-s + 27-s + 2·29-s − 4·31-s + 33-s + 6·37-s − 4·39-s + 10·41-s − 4·43-s + 2·47-s − 3·49-s − 51-s − 12·53-s − 8·57-s − 12·61-s − 2·63-s + 12·67-s − 6·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 1/3·9-s + 0.301·11-s − 1.10·13-s − 0.242·17-s − 1.83·19-s − 0.436·21-s − 1.25·23-s − 25-s + 0.192·27-s + 0.371·29-s − 0.718·31-s + 0.174·33-s + 0.986·37-s − 0.640·39-s + 1.56·41-s − 0.609·43-s + 0.291·47-s − 3/7·49-s − 0.140·51-s − 1.64·53-s − 1.05·57-s − 1.53·61-s − 0.251·63-s + 1.46·67-s − 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35904\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(286.694\)
Root analytic conductor: \(16.9320\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35904,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8999284745\)
\(L(\frac12)\) \(\approx\) \(0.8999284745\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.89019960745929, −14.31290714082034, −14.07414246964492, −13.21451284658241, −12.88313432052339, −12.37977086353777, −11.95339765541844, −11.10873748491390, −10.67576688558010, −9.962680195829979, −9.498449055451165, −9.265192690524721, −8.338646089558109, −7.983014203553383, −7.403286420627668, −6.632533535779711, −6.270844306932208, −5.671674824555361, −4.667922565833749, −4.232739627893855, −3.680976361544099, −2.825341285591685, −2.264688580307339, −1.682831446379166, −0.3166184168518901, 0.3166184168518901, 1.682831446379166, 2.264688580307339, 2.825341285591685, 3.680976361544099, 4.232739627893855, 4.667922565833749, 5.671674824555361, 6.270844306932208, 6.632533535779711, 7.403286420627668, 7.983014203553383, 8.338646089558109, 9.265192690524721, 9.498449055451165, 9.962680195829979, 10.67576688558010, 11.10873748491390, 11.95339765541844, 12.37977086353777, 12.88313432052339, 13.21451284658241, 14.07414246964492, 14.31290714082034, 14.89019960745929

Graph of the $Z$-function along the critical line